We present an observer for parameter estimation in nonlinear oscillating systems (periodic, quasiperiodic or chaotic). The observer requires measurements of generalized displacements. It estimates generalized velocities on a fast time scale and unknown parameters on a slow time scale, with time scale separation specified by a small parameter ε. Parameter estimates converge asymptotically like where is time, provided the data is such that a certain averaged coefficient matrix is positive definite. The method is robust: small model errors and noise cause small estimation errors. The effects of zero mean, high frequency noise can be reduced by faster sampling. Several numerical examples show the effectiveness of the method.
Issue Section:
Technical Papers
1.
Chatterjee, A., and Cusumano, J. P., 1999, “Parameter Estimation in a Nonlinear Vibrating System Using an Observer for an Extended System,” ASME Paper No. DETC99/VIB-8067 (available on CDROM).
2.
Bard, Y., 1974, Nonlinear Parameter Estimation, Academic Press, Orlando, FL.
3.
Jezequel, L., and Lamarque, C. H., (eds), 1992, Euromech 280, Proc. of Int. Symp. on Identification of Nonlinear Mechanical Systems from Dynamic Tests, Ecully, France, 1991, A. A. Balkema, Rotterdam, Netherlands.
4.
Srinath, M. D., Rajasekaran, P. K., and Viswanathan, R., 1996, Introduction to Statistical Signal Processing With Applications, Prentice-Hall, NJ (Indian Reprint published by Prentice-Hall of India, New Delhi, 1999).
5.
Masri
, S. F.
, and Caughey
, T. K.
, 1979
, “A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,” ASME J. Appl. Mech.
, 46
, pp. 433
–447
.6.
Masri
, S. F.
, Miller
, R. K.
, Saud
, A. F.
, and Caughey
, T. K.
, 1987
, “Identification of Nonlinear Vibrating Structures: Part I-Formulation
,” ASME J. Appl. Mech.
, 54
, pp. 918
–922
.7.
Masri
, S. F.
, Miller
, R. K.
, Saud
, A. F.
, and Caughey
, T. K.
, 1987
, “Identification of Nonlinear Vibrating Structures: Part II-Applications
,” ASME J. Appl. Mech.
, 54
, pp. 923
–929
.8.
Mohammad
, K. S.
, Worden
, K.
, and Tomlinson
, G. R.
, 1992
, “Direct Parameter Estimation for Linear and Non-Linear Structures
,” J. Sound Vib.
, 152
(3
), pp. 471
–499
.9.
Feeny, B. F., and Yuan, C. M., 1999, “Parametric Identification of an Experimental Two-Well Oscillator,” Proc. of 1999 ASME Design Engineering and Technical Conf., Las Vegas, Nevada, ASME Paper, No. DETC99/VIB-8361.
10.
Tadi
, M.
, and Rabitz
, H.
, 1997
, “Explicit Method for Parameter Identification
,” J. Guid. Control Dyn.
, 20
(3
), pp. 486
–491
.11.
Mook
, D. J.
, 1989
, “Estimation and Identification of Nonlinear Dynamic Systems
,” AIAA J.
, 27
(7
), pp. 968
–974
.12.
Yasuda
, K.
, and Kamiya
, K.
, 1999
, “Experimental Identification Technique of Nonlinear Beams in Time Domain.
” Nonlinear Dyn.
, 18
, pp. 185
–202
.13.
Eykhoff, P., 1974, System Identification: Parameter and State Estimation, John Wiley & Sons, London, (Reprinted 1977.) Chap. 13.
14.
Rajamani
, R.
, and Cho
, Y. M.
, 1998
, “Existence and Design of Observers for Nonlinear Systems: Relation to Distance to Unobservability
,” Int. J. Control
, 69
(5
), pp. 717
–731
.15.
Chang
, P. H.
, Lee
, J. W.
, and Park
, S. H.
, 1997
, “Time Delay Observer: A Robust Observer for Nonlinear Plants
,” ASME J. Dyn. Syst., Meas., Control
, 119
, pp. 521
–527
.16.
Bernard
, O.
, Sallet
, G.
, and Sciandra
, A.
, 1998
, “Nonlinear Observers for a Class of Biological Systems: Application to Validation of a Phytoplanktonic Growth Model
,” IEEE Trans. Autom. Control
, 43
(8
), pp. 1056
–1065
.17.
Farza
, M.
, Busawon
, K.
, and Hammouri
, H.
, 1998
, “Simple Nonlinear Observers for On-line Estimation of Kinetic Rates in Bioreactors
,” Automatica
, 34
(3
), pp. 301
–318
.18.
Maybhate
, A.
, and Amritkar
, R. E.
, 2000
, “Dynamics Algorithm for Parameter Estimation and its Applications
,” Phys. Rev. E
, 61
(6
), pp. 6461
–6470
.19.
Ahmed
, J.
, Coppola
, V. T.
, and Bernstein
, D. S.
, 1998
, “Adaptive Asymptotic Tracking of Spacecraft Attitude Motion With Inertia Matrix Identification.
” J. Guid. Control Dyn.
, 21
(5
), pp. 684
–691
.20.
Sanders, J. A., and Verhulst, F., 1985, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences 59, Springer-Verlag, New York.
21.
Golub, G. H., and Van Loan, C. F., 1989, Matrix Computations, Second Edition, John Hopkins University Press, Baltimore, MD.
22.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.
Copyright © 2003
by ASME
You do not currently have access to this content.