A combined observer is synthesized by unifying the conventional linear state estimator and the perturbation observer to estimate plant uncertainties and disturbances. It enables robust state estimation for uncertain dynamical systems and simultaneously, provides full-state to the perturbation observer under output feedback conditions. The proposed combined observer is very practical since it is given as a recursive discrete-time form with minimal tuning parameters, and it requires no knowledge of the plant uncertainty. A coupled estimation error dynamics is derived, and the related technical issues such as stability and noise sensitivity are addressed. The combined observer setting is also extended to stochastic systems, and the discrete Kalman filter is reformulated by including the perturbation estimate update process. Numerical examples and experimental results validate the proposed schemes.

1.
Friedland, B., 1996, Advanced Control System Design, Prentice-Hall, New Jersey.
2.
Slotine
,
J.-J. E.
,
Hedrick
,
J. K.
, and
Misawa
,
E. A.
,
1987
, “
On Sliding Observers for Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
109
(
3
), pp.
245
252
.
3.
Walcott
,
B. L.
, and
Zak
,
S. H.
,
1988
, “
Combined Observer-Controller Synthesis for Uncertain Dynamical Systems with Applications
,”
IEEE Trans. Syst. Man. Cybern.
,
18
,
Feb.
, pp.
88
104
.
4.
Moura
,
J. T.
,
Elmali
,
H.
, and
Olgac
,
N.
,
1997
, “
Sliding Mode Control with Sliding Perturbation Observer
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
4
), pp.
657
665
.
5.
Chang
,
P. H.
,
Lee
,
J. W.
, and
Park
,
S. H.
,
1997
, “
Time Delay Observer: A Robust Observer for Nonlinear Plants
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
3
), pp.
521
527
.
6.
Gu
,
D.-W.
, and
Poon
,
F. W.
,
2001
, “
A Robust State Observer Scheme
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
1958
1963
.
7.
Petersen
,
I. R.
, and
McFarlane
,
D. C.
,
1994
, “
Optimal Guaranteed Cost Control and Filtering for Uncertain Linear Systems
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1971
1977
.
8.
Shaked
,
U.
, and
de Souza
,
C. E.
,
1995
, “
Robust Minimum Variance Filtering
,”
IEEE Trans. Signal Process.
,
43
(
11
), pp.
2474
2483
.
9.
Tsui
,
C.-C.
,
1996
, “
A New Design Approach to Unknown Input Observers
,”
IEEE Trans. Autom. Control
,
41
(
3
), pp.
464
468
.
10.
Hou
,
M.
,
Pugh
,
A. C.
, and
Muller
,
P. C.
,
1999
, “
Disturbance Decoupled Functional Observers
,”
IEEE Trans. Autom. Control
,
44
(
2
), pp.
382
386
.
11.
Kwon, S. J., and Chung, W. K., 2002, “A Discrete-Time Design and Analysis of Perturbation Observer,” Proc. of 2002 American Control Conf., pp. 2653–2658.
12.
Kim
,
J. H.
, and
Oh
,
J.-H.
,
2000
, “
Robust State Estimator of Stochastic Linear Systems with Unknown Disturbances
,”
IEE Proc.: Control Theory Appl.
,
147
(
2
), pp.
224
228
.
13.
Umeno
,
T.
, and
Hori
,
Y.
,
1991
, “
Robust Speed Control of DC Servomotors Using Modern Two Degree-of-Freedom Controller Design
,”
IEEE Trans. Ind. Electron.
,
38
(
5
), pp.
363
368
.
14.
Ohnishi
,
K.
,
Shibata
,
M.
, and
Murakami
,
T.
,
1996
, “
Motion Control for Advanced Mechatronics
,”
IEEE/ASME Trans. Mechatron.
,
1
(
1
), pp.
56
67
.
15.
Morgan
,
R. G.
, and
Ozguner
,
U.
,
1985
, “
A Decentralized Variable Structure Control Algorithm for Robotic Manipulators
,”
IEEE Trans. Rob. Autom.
,
RA-1
(
1
), pp.
57
65
.
16.
Hsia
,
T. C.
,
1989
, “
A New Technique for Robust Control of Servo Systems
,”
IEEE Trans. Ind. Electron.
,
36
(
1
), pp.
1
7
.
17.
Youcef-Toumi
,
K.
, and
Ito
,
O.
,
1990
, “
A Time Delay Controller for Systems With Unknown Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
133
142
.
18.
Astrom, K. J., and Wittenmark, B., 1997, Computer-Controlled Systems: Theory and Design, 3rd Edition, Prentice-Hall, New Jersey.
19.
Lewis, F. L., 1992, Applied Optimal Control and Estimation, Prentice-Hall, New Jersey.
20.
Grewal, M. S., and Andrews, A. P., 1993, Kalman Filtering: Theory and Practice, Prentice-Hall, New Jersey.
You do not currently have access to this content.