In this paper, a method is developed to find the output feedback fuzzy controllers for assigning a common state covariance matrix of discrete Takagi–Sugeno (T–S) fuzzy systems. The fuzzy control approach developed in this paper is based on the concept of Parallel Distributed Compensation (PDC). For each rule of the discrete T–S fuzzy model, it shows how to parameterize the static linear output feedback control gains to achieve a common state covariance matrix for each subsystem. Finally, a numerical example is provided to verify the effects of the proposed method.

1.
Tanaka
,
K.
, and
Sugeno
,
M.
,
1992
, “
Stability Analysis and Design of Fuzzy Control Systems
,”
Fuzzy Sets Syst.
,
45
, pp.
135
156
.
2.
Cuesta
,
F.
,
Gordillo
,
F.
,
Aracil
,
J.
, and
Ollero
,
A.
,
1999
, “
Stability Analysis of Nonlinear Multivariable Takagi-Sugeno Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
,
7
, pp.
505
520
.
3.
Chang
,
W. J.
,
2001
, “
Model-Based Fuzzy Controller Design With Common Observability Gramian Assignment
,”
ASME J. Dyn. Syst., Meas., Control
,
123
, pp.
113
116
.
4.
Chang
,
W. J.
,
Sun
,
C. C.
, and
Fuh
,
C. C.
,
2001
, “
Continuous Output Feedback Fuzzy Controller Design With A Specified Common Controllability Gramian
,”
Int. J. Fuzzy Syst.
,
3
, pp.
356
363
.
5.
Chang
,
W. J.
, and
Sun
,
C. C.
,
2003
, “
Constrained Fuzzy Controller Design of Discrete Takagi-Sugeno Fuzzy Models
,”
Fuzzy Sets Syst.
,
133
, pp.
37
55
.
6.
Chang
,
W. J.
, and
Sun
,
C. C.
,
2000
, “
Fuzzy Controller Design for Nonlinear TORA Systems
,”
Int. J. Fuzzy Syst.
,
2
, pp.
60
66
.
7.
Chang
,
W. J.
,
2003
, “
A Fuzzy Controller Design via the Inverse Solution of Lyapunov Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
125
, pp.
42
47
.
8.
Guerra
,
T. M.
, and
Vermeiren
,
L.
,
2001
, “
Control Laws for Takagi-Sugeno Fuzzy Models
,”
Fuzzy Sets Syst.
,
120
, pp.
95
108
.
9.
Tanaka, K., and Wang, H. O., 2001, Fuzzy Control System Design and Analysis—A Linear Matrix Inequality Approach, John Wiley & Son Inc.
10.
Tanaka, K., Ikeda, T., and Wang, H. O., 1997, “An LMI Approach to Fuzzy Controller Designs Based on Relaxed Stability Conditions,” Proc. 6th Int. Fuzzy Syst. Conf., Barcelona, Spain, pp. 171–179.
11.
Boyd, S. et al., 1994, Linear Matrix Inequalities in Systems and Control Theory, SIAM, Philadelphia.
12.
Collins
, Jr.,
E. G.
, and
Skelton
,
R. E.
,
1987
, “
A Theory of State Covariance Assignment for Discrete Systems
,”
IEEE Trans. Autom. Control
,
32
, pp.
35
41
.
13.
Hsien
,
C.
, and
Skelton
,
R. E.
,
1990
, “
All Covariance Controllers for Linear Discrete-Time Systems
,”
IEEE Trans. Autom. Control
,
35
, pp.
1588
1591
.
14.
Chung
,
H. Y.
, and
Chang
,
W. J.
,
1992
, “
Covariance Control With Variance Constraints for Continuous Perturbed Stochastic Systems
,”
Syst. Control Lett.
,
19
, pp.
413
417
.
15.
Chang
,
W. J.
, and
Chung
,
H. Y.
,
1992
, “
Upper Bound Covariance Control of Discrete Perturbed Systems
,”
Syst. Control Lett.
,
19
, pp.
493
498
.
16.
Chung
,
H. Y.
, and
Chang
,
W. J.
,
1990
, “
Observed-State Feedback Covariance Control for Bilinear Stochastic Discrete Systems
,”
Control Theory Adv. Technol.
,
7
, pp.
695
707
.
17.
Chung
,
H. Y.
, and
Chang
,
W. J.
,
1991
, “
Constrained Variance Design for Bilinear Stochastic Continuous Systems
,”
IEE Proc.-D: Control Theory Appl.
,
138
, pp.
145
150
.
18.
Chung
,
H. Y.
, and
Chang
,
W. J.
,
1994
, “
Extension of the Covariance Control Principle to Nonlinear Stochastic Systems
,”
IEE Proc.-D: Control Theory Appl.
,
141
, pp.
93
98
.
19.
Chang
,
W. J.
, and
Chung
,
H. Y.
,
1996
, “
A Covariance Control Design Incorporating Optimal Estimation for Nonlinear Stochastic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
346
349
.
20.
Chang
,
K. Y.
,
Wang
,
W. J.
, and
Chang
,
W. J.
,
1997
, “
Covariance Control for Stochastic Multivariale Systems With Hysteresis Nonlinearity
,”
Int. J. Syst. Sci.
,
28
, pp.
731
736
.
21.
Rao, C. R., and Mitra, S. K., 1971, Generalized Inverse of Matrices and its Applications, John Wiley & Sons, Inc.
22.
Campbell, S. L., and Meyer, C. D., 1991, Generalized Inverses of Linear Transformations, Dover.
23.
Konstantinov, M. M., Christov, N. D., and Petkov, P. Hr., 1986, “On the Stability of Linear Stochastic Systems With Additive Noise,” Proc. 2nd IFAC Symposium on Stochastic Control, Vilnius, Lithuanian SSR, USSR, pp. 157–160.
24.
Kwakernaak, H., and Sivan, R., 1972, Linear Optimal Control Systems, John Wiley & Suns, Inc.
You do not currently have access to this content.