An adaptive output force control scheme for hydraulic cylinders is proposed by using direct output force measurement through loadcells. Due to the large and somewhat uncertain piston friction force, cylinder chamber pressure control with Coulomb-viscous friction prediction may not be sufficient enough to achieve a precise output force control. In the proposed approach, the output force error resulting from direct measurement is used not only for feedback control, but also to update the parameters of an appropriate friction model which includes the Coulomb-viscous friction force in sliding motion and the output force dependent friction force in presliding motion. The L2 and L stability is guaranteed for both the pressure force error and the output force error. Under bounded desired output force and its derivative, asymptotic stability of both the pressure force error and the output force error is also guaranteed. The experimental results demonstrate that a good pressure force control system does not necessarily guarantee a good output force control, and that adaptive friction compensation is superior to fixed-parameter friction compensation. The output force control transfer functions of a robot joint driven by two hydraulic cylinders in pull–pull configuration are limited by ±1.5dB up to 20Hz, tested in free motion and in rigid constraint. The excellent output force (joint torque) control performance implies the dynamic equivalency between a hydraulic cylinder and an electrically-driven motor within the prespecified bandwidth. This allows to emulate an electrically-driven robot by a hydraulic robot.

1.
Yao
,
B.
,
Bu
,
F.
,
Reedy
,
J.
, and
Chiu
,
G. T.-C.
, 2000, “
Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
1
), pp.
79
91
.
2.
Bu
,
F.
, and
Yao
,
B.
, 2001, “
Desired Compensation Adaptive Robust Control of Single-Rod Electro-Hydraulic Actuator
,”
Proceedings of 2001 American Control Conference
,
Washington
, D.C, pp.
3926
3931
.
3.
Mattila
,
J.
, and
Virvalo
,
T.
, 2000, “
Energy-Efficient Motion Control of a Hydraulic Manipulator
,”
Proceedings of the 2000 IEEE International Conference Robotics and Automation
,
San Francisco
, CA, pp.
3000
3006
.
4.
Sirouspour
,
M. R.
, and
Salcudean
,
S. E.
, 2001, “
Nonlinear Control of Hydraulic Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
2
), pp.
173
182
.
5.
Honegger
,
M.
, and
Corke
,
P.
, 2001, “
Model-Based Control of Hydraulically Actuated Manipulators
,”
Proceedings of the 2001 IEEE International Conference Robotics and Automation
,
Seoul
, Korea, pp.
2553
2559
.
6.
Sun
,
Z.
, and
Tsao
,
T.-C.
, 2000, “
Adaptive Control With Asymptotic Tracking Performance and Its Application to an Electro-Hydraulic Servo System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
1
), pp.
188
195
.
7.
Eryilmaz
,
B.
, and
Wilson
,
B. H.
, 2001, “
Improved Tracking Control of Hydraulic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
3
), pp.
457
462
.
8.
Ziaei
,
K.
, and
Sepehri
,
N.
, 2001, “
Design of a Nonlinear Adaptive Controller for an Electrohydraulic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
3
), pp.
449
456
.
9.
Niksefat
,
N.
, and
Sepehri
,
N.
, 1999, “
Robust Force Controller Design for a Hydraulic Actuator Based on Experimental Input-Output Data
,”
Proceedings of 1999 American Control Conference
,
San Diego
, CA, pp.
3718
3722
.
10.
Niksefat
,
N.
,
Wu
,
C. Q.
, and
Sepehri
,
N.
, 2001, “
Design of a Lyapunov Controller for an Electro-Hydraulic Actuator During Contact Tasks
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
2
), pp.
299
307
.
11.
Piedboeuf
,
J.-C.
,
De Carufel
,
J.
,
Aghili
,
F.
, and
Dupuis
,
E.
, 1999, “
Task Verification Facility for the Canadian Special Purpose Dextrous Manipulator
,”
Proceedings of the 1999 IEEE International Conference Robotics and Automation
,
Detroit
, MI, pp.
1077
1083
.
12.
Zhu
,
W.-H.
,
Piedboeuf
,
J.-C.
, and
Gonthier
,
Y.
, 2002, “
Emulation of a Space Robot Using a Hydraulic Manipulator on Ground
,”
Proceedings of the 2002 IEEE International Conference Robotics and Automation
,
Washington
, DC, pp.
2315
2320
.
13.
Sohl
,
G. A.
, and
Bobrow
,
J. E.
, 1999, “
Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
(
2
), pp.
238
247
.
14.
Alleyne
,
A.
, and
Liu
,
R.
, 1999, “
On the Limitations of Force Tracking Control for Hydraulic Servosystems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
(
2
), pp.
184
190
.
15.
Liu
,
R.
, and
Alleyne
,
A.
, 2000, “
Nonlinear Force/Pressure Tracking of an Electro-Hydraulic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
1
), pp.
232
237
.
16.
Namvar
,
M.
, and
Aghili
,
F.
, 2003, “
A Combined Scheme for Identification and Robust Torque Control of Hydraulic Actuators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
4
), pp.
595
606
.
17.
Tafazoli
,
S.
,
De Silva
,
C. W.
, and
Lawrence
,
P. D.
, 1998, “
Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
(
3
), pp.
401
411
.
18.
Tafazoli
,
S.
,
Lawrence
,
P. D.
, and
Salcudean
,
S. E.
, 1999, “
Identification of Inertial and Friction Parameters for Excavator Arms
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
5
), pp.
966
971
.
19.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
3
), pp.
419
425
.
20.
Lischinsky
,
P.
,
Canudas de Wit
,
C.
, and
Morel
,
G.
, 1999, “
Friction Compensation for an Industrial Hydraulic Robot
,”
IEEE Control Syst. Mag.
0272-1708,
19
(
1
), pp.
25
32
.
21.
Alleyne
,
A.
, and
Hedrick
,
J. K.
, 1995, “
Nonlinear Adaptive Control of Active Suspensions
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
3
(
1
), pp.
94
101
.
22.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C.
, and
Prajogo
,
T.
, 2000, “
An Integrated Friction Model Structure With Improved Presliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
4
), pp.
675
686
.
23.
Merrit
,
H. E.
, 1976,
Hydraulic Control Systems
,
Wiley
, New York.
24.
Zhu
,
W. H.
, and
De Schutter
,
J.
, 1999, “
Adaptive Control of Mixed Rigid/Flexible Joint Robot Manipulators Based on Virtual Decomposition
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
2
), pp.
310
317
.
25.
Zhu
,
W. H.
,
Xi
,
Y. G.
,
Zhang
,
Z. J.
,
Bien
,
Z.
, and
De Schutter
,
J.
, 1997, “
Virtual Decomposition Based Control for Generalized High Dimensional Robotic Systems With Complicated Structure
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
3
), pp.
411
436
.
26.
Tao
,
G.
, 1997, “
A Simple Alternative to the Barbălat Lemma
,”
IEEE Trans. Autom. Control
0018-9286,
42
(
5
), p.
698
.
27.
Gonthier
,
Y.
,
McPhee
,
J.
,
Lange
,
C.
, and
Piedboeuf
,
J.-C.
, 2002, “
A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction
,”
CSME Forum 2002 SCGM Queen’s University
,
Kingston
, Ontario.
You do not currently have access to this content.