Robust control techniques require a dynamic model of the plant and bounds on model uncertainty to formulate control laws with guaranteed stability. Although techniques for modeling dynamic systems and estimating model parameters are well established, very few procedures exist for estimating uncertainty bounds. In the case of H control synthesis, a conservative weighting function for model uncertainty is usually chosen to ensure closed-loop stability over the entire operating space. The primary drawback of this conservative, “hard computing” approach is reduced performance. This paper demonstrates a novel “soft computing” approach to estimate bounds of model uncertainty resulting from parameter variations, unmodeled dynamics, and nondeterministic processes in dynamic plants. This approach uses confidence interval networks (CINs), radial basis function networks trained using asymmetric bilinear error cost functions, to estimate confidence intervals associated with nominal models for robust control synthesis. This research couples the “hard computing” features of H control with the “soft computing” characteristics of intelligent system identification, and realizes the combined advantages of both. Simulations and experimental demonstrations conducted on an active magnetic bearing test rig confirm these capabilities.

1.
Zhou
,
K.
, and
Doyle
,
J.
, 1998,
Essentials of Robust Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
, 1990,
System Dynamics: A Unified Approach
,
Wiley-Interscience
,
New York
.
3.
Ljung
,
L.
, and
Glad
,
T.
, 1994,
Modeling of Dynamic Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
4.
Ewins
,
D. J.
, 2000,
Modal Testing: Theory, Practice and Application
, 2nd ed., Research Studies Pr.
5.
Ljung
,
L.
, 1987,
System Identification: Theory for the User
,
Prentice Hall
,
Englewood Cliffs, NJ
.
6.
Narendra
,
K. S.
, and
Parthasarathy
,
K.
, 1990, “
Identification and Control of Dynamical Systems Using Neural Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
1
(
1
), pp.
4
27
.
7.
Sjöberg
,
J.
,
Hjalmarsson
,
H.
, and
Ljung
,
L.
, 1994, “
Neural Networks in System Identification
,”
Proceedings of the 1994 IFAC System Identification Symposium
,
1
, pp.
359
382
.
8.
White
,
D. A.
, and
Sofge
,
D. A.
, 1992,
Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
,
Van Nostrand Reinhold
,
New York
.
9.
Goodwin
,
G. C.
, and
Salgado
,
M.
, 1989, “
A Stochastic Embedding Approach for Quantifying Uncertainty in Estimation of Restricted Complexity Models
,”
Int. J. Adapt. Control Signal Process.
0890-6327,
3
, pp.
333
356
.
10.
Wahlberg
,
B.
, and
Ljung
,
L.
, 1992, “
Hard Frequency-Domain Model Error Bounds from Least Squares Like Identification Techniques
,”
IEEE Trans. Autom. Control
0018-9286,
37
(
7
), pp.
900
912
.
11.
Garulli
,
A.
, and
Reinelt
,
W.
, 1999, “
On Model Error Modeling in Set Membership Identification
,” Technical Report from the Automatic Control Group,
Linkoping Univ
, Sweden.
12.
Giarre
,
L.
,
Milanese
,
M.
, and
Taragna
,
M.
, 1997, “
H∞ Identification and Model Quality Evaluation
,”
IEEE Trans. Autom. Control
0018-9286,
42
(
2
), pp.
188
199
.
13.
Milanese
,
M.
,
Norton
,
J.
,
Piet-Lahanier
,
H.
, and
Walter
,
E.
, 1996,
Bounding Approaches to System Identification
,
Plenum
,
New York
.
14.
Reinelt
,
W.
,
Garulli
,
A.
, and
Ljung
,
L.
, 2002, “
Comparing Different Approaches to Model Error Modeling in Robust Identification
,”
Automatica
0005-1098,
38
, pp.
787
-
803
.
15.
Ljung
,
L.
, 1999, “
Model Validation and Model Error Modeling
,” in
B.
Wittenmark
and
A.
Rantzer
eds,
Proc. of the Åström Symposium on Control
, pp.
15
42
,
Lund, Sweden
.
16.
Pichot
,
M. A.
,
Kajs
,
J. P.
,
Murphy
,
B. R.
,
Ouroua
,
A.
,
Rech
,
B. M.
,
Beno
,
J. H.
,
Buckner
,
G. D.
, and
Palazzolo
,
B.
, 2001, “
Active Magnetic Bearings for Energy Storage Systems for Combat Vehicles
,”
IEEE Trans. Magn.
0018-9464,
37
(
1
), pp.
318
323
.
17.
Buckner
,
G. D.
,
Palazzolo
,
A.
,
Kajs
,
J.
,
Beno
,
B. Murphy
, 1999, “
Control System for Inside-Out Configuration Active Magnetic Bearings
,”
Proceedings of the 5th International Symposium on Magnetic Suspension Technology
,
Santa Barbara, CA
.
18.
Nonami
,
K.
, and
Ito
,
T.
, 1996, “
μ-Synthesis of Flexible Rotor-Magnetic Bearing Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
4
, pp.
503
512
.
19.
Cui
,
W. M.
, and
Nonami
,
K.
, 1992, “
H∞ Control of Flexible Rotor-Magnetic Bearing Systems
,”
Proc. of the 3rd Int. Sym. on Magnetic Bearings
, pp.
505
512
.
20.
Fitzgerald
,
A. E.
,
Kingsley
,
C.
Jr.
, and
Umans
,
S. D.
, 1990,
Electric Machinery
, 5th ed.,
McGraw-Hill
,
New York
.
21.
Rummelhart
,
D.
,
Hinton
,
G.
, and
Williams
,
R.
, 1986,
Parallel Distributed Processing, Vol. 1
,
MIT
,
Cambridge, MA
.
22.
Buckner
,
G. D.
, 2002, “
Intelligent Bounds on Modeling Uncertainties: Applications to Sliding Mode Control
,”
IEEE Trans. Syst. Sci. Cybern.
0536-1567,
32
, pp.
113
124
.
You do not currently have access to this content.