We propose the synthesis of robust fractional-order controllers using the principles of quantitative feedback theory (QFT). The resulting controllers are called as fractional-order QFT controllers. To demonstrate the synthesis method, we synthesize proportional-integral-derivative (PID) and more general types of fractional-order QFT controllers for a fractional-order plant, a DC motor, and a multistage flash desalination process.

1.
Podlubny
,
I.
, 1999,
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
1
), pp.
208
214
.
2.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic Press
, New York.
3.
Wang
,
J. C.
, 1987, “
Realization of Generalized Warburg Impedance With RC Ladder and Transmission Lines
,”
J. Electrochem. Soc.
0013-4651,
134
(
8
), pp.
1915
1940
.
4.
Keshner
,
M. S.
, 1982, “
1/f noise
,”
Proc. IEEE
0018-9219,
70
(
3
), pp.
212
218
.
5.
Mandelbrot
,
B.
, 1967, “
Some Noises With 1/f Spectrum: A Bridge Between Direct Current and White Noise
,”
IEEE Trans. Inf. Theory
0018-9448,
IT-13
(
2
), pp.
289
298
.
6.
Onaral
,
B.
, and
Schwan
,
H. P.
, 1982, “
Linear and Nonlinear Properties of Platinum Electrode Polarization, Part I: Frequency Dependence at Very Low Frequencies
,”
Med. Biol. Eng. Comput.
0140-0118,
20
, pp.
299
306
.
7.
Le Mehauté
,
A.
, 1991,
Fractal Geometries
,
CRC Press
, Boca Raton.
8.
Bode
,
H. W.
, 1945,
Network Analysis and Feedback Design
,
Van Nostrand
, New York.
9.
Manabe
,
S.
, 1961, “
The Non-Integer Integral and Its Application to Control Systems
,”
ETJ Jpn.
,
3-4
(
6
), pp.
83
87
.
10.
Manabe
,
S.
, 2003, “
Early Development of Fractional Order Control
,”
Proc. of DETC’03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, New York, ASME Paper No. DETC2003/VIB-48370, Chicago, Sept. 2–6.
11.
Åström
,
K. J.
, 1999, “
Model Uncertainty and Robust Control
,” Department of Automatic Control, Lund University, Lund, Sweden, http://www.control.lth.se/~kja/modeluncertainty.pdfhttp://www.control.lth.se/~kja/modeluncertainty.pdf.
12.
Oustaloup
,
A.
,
Moreau
,
X.
, and
Nouillant
,
M.
, 1996, “
The CRONE Suspension
,”
Control Eng. Pract.
0967-0661,
4
(
8
), pp.
1101
1108
.
13.
Oustaloup
,
A.
,
Mathieu
,
B.
, and
Lanusse
,
P.
, 1995, “
The CRONE Control of Resonant Plants: Application to a Flexible Transmission
,”
Eur. J. Control
0947-3580,
1
(
2
), pp.
113
121
.
14.
Lanusse
,
P.
,
Pommier
,
V.
, and
Oustaloup
,
A.
, 2000, “
Fractional Control System Design for a Hydraulic Actuator
,”
Proc. of 1st IFAC Conference on Mechatronics Systems, Mechatronic 2000
,
Darmstadt
, Sept.
15.
Lurie
,
B. J.
, 1994, “
Three-Parameter Tunable Tilt-Integral-Derivative (TID) Controller
,” U.S. Patent No. US5371670.
16.
Oustaloup
,
A.
, and
Mathieu
,
B.
, 1999,
La Commande CRONE: Du Scalaire Aumultivariable
,
Hermes
, Paris.
17.
Podlubny
,
I.
,
Petrás
,
I.
,
Vinagare
,
B. M.
,
O’Leary
,
P.
, and
Dorcak
,
L.
, 2002, “
Analogue Realization of Fractional-Order Controllers
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
281
296
.
18.
Vinagre
,
B. M.
,
Petras
,
I.
,
M.
P.
, and
Dorcak
,
L.
, 2001, “
Two Digital Realization of Fractional Controllers: Application to Temperature Control of a Solid
,”
Proc. of European Control Conference
, Porto, Portugal, Sept.,
Laoisier
, Cachan, pp.
1764
1767
.
19.
Vinagre
,
B. M.
,
Podlubny
,
I.
,
Hernandez
,
A.
, and
Feliu
,
V.
, 2000, “
On Realization of Fractional-Order Controllers
,”
Proc. of Conference Internationale Fracophone d’Automatique
,
Lille
, France, Vol.
7
, pp.
945
950
.
20.
Valério
,
D.
, and
Sá da Costa
,
J.
, 2005, “
Time-Domain Implementation of Fractional Order Controllers
,”
IEE Proc.: Control Theory Appl.
1350-2379,
152
, pp.
539
552
.
21.
Horowitz
,
I. M.
, 1993,
Quantitative Feedback Design Theory (QFT)
,
QFT Publications
, Boulder.
22.
Hansen
,
E.
, 1992,
Global Optimization Using Interval Analysis
,
Marcel Dekker
, New York.
23.
Ratschek
,
H.
, and
Rokne
,
J.
, 1988,
New Computer Methods for Global Optimization
,
Wiley
, New York.
24.
Ballance
,
D. J.
, and
Gawthrop
,
P. J.
, 1991, “
Control Systems Design Via a QFT Approach
,”
Proc. of IEE Conference Control 91
, Edinburgh,
IEE Press
, London, UK, Vol.
1
, pp.
476
481
.
25.
Bryant
,
G.
, and
Halikias
,
G.
, 1995, “
Optimal Loop-Shaping for Systems With Large Parameter Uncertainty via Linear Programming
,”
Int. J. Control
0020-7179,
62
(
3
), pp.
557
568
.
26.
Chait
,
Y.
,
Chen
,
Q.
, and
Hollot
,
C. V.
, 1999, “
Automatic Loop-Shaping of QFT Controllers Via Linear Programming
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
, pp.
351
357
.
27.
Gera
,
A.
, and
Horowitz
,
I. M.
, 1980. “
Optimization of the Loop Transfer Function
,”
Int. J. Control
0020-7179,
31
, pp.
389
398
.
28.
Thompson
,
D. F.
, and
Nwokah
,
O. D. I.
, 1994, “
Analytical Loop Shaping Methods in Quantitative Feedback Theory
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
(
2
), pp.
169
177
.
29.
Chen
,
W.
, and
Ballance
,
D. J.
, 1997, “
Stability Analysis On the Nichols Chart and Its Application in QFT
,” Technical Report No. CSC-98013, Center for Systems and Control, Department of Mechanical Engineering, University of Glasgow.
30.
Nataraj
,
P. S. V.
, and
Tharewal
,
S.
, “
An Interval Analysis Algorithm for Automated Controller Synthesis in QFT Designs
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434, to be published.
31.
Borghesani
,
C.
,
Chait
,
Y.
, and
Yaniv
,
O.
, 1995,
The QFT Frequency Domain Design Toolbox for Use With MATLAB®
,
The MathWorks, Inc.
, MA.
32.
Chen
,
W.
,
Ballance
,
D. J.
, and
Li
,
Y.
, 1998, “
Automatic Loop-Shaping in QFT Using Genetic Algorithms
,”
Proc. of 3rd Asia-Pacific Conference on Control and Measurement
, pp.
63
67
.
33.
Ismail
,
A.
, 2001, “
Robust QFT-Based TBT Control of MSF desalination plants
,”
Desalination
0011-9164,
133
, pp.
105
121
.
You do not currently have access to this content.