Input shaping is a technique that seeks to reduce residual vibrations of lightly damped systems through modification of the command input to the system. Although several input shaping techniques have been derived primarily from linear system theory, theoretical results are hard to be traced for their application to nonlinear systems. In most of the reported cases, a fixed shaper is designed based on the linearized version around an operating point of the nonlinear system. In this paper, an adaptive form of the input shaper is proposed for a class of nonlinear lightly damped systems. The adaptive shaper adjusts the magnitude and relative time difference between its impulses according to the instant frequency and damping of the linearized systems. The efficacy of the proposed scheme and its comparison to a fixed shaper is investigated through its application to a pendulum system. The adaptive shaper’s parameters vary according to the pendulum’s angle. The illustrative examples indicate the deficiencies of the fixed case and demonstrate the efficacy of the designed controller.

1.
Smith
,
O. J. M.
, 1957, “
Posicast Control of Damped Oscillatory Systems
,”
Proc. IRE
0096-8390,
45
, pp.
1249
1255
.
2.
Singer
,
N. C.
, and
Seering
,
W. P.
, 1990, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
76
82
.
3.
Singhose
,
W.
,
Seering
,
W.
, and
Singer
,
N.
, 1994, “
Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
654
658
.
4.
Pao
,
L. Y.
, and
Singhose
,
W. E.
, 1996, “
Unity-Magnitude Input Shapers and Their Relation to Time-Optimal Control
,”
Proc. of 1996 IFAC World Congress
,
IEEE
,
San Francisco, CA
, pp.
385
390
.
5.
Shan
,
J.
,
Sun
,
D.
, and
Liu
,
D.
, 2004, “
Design for Robust Component Synthesis Vibration Suppression of Flexible Structures With On-Off Actuators
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
, pp.
512
525
.
6.
Liu
,
Q.
, and
Wie
,
B.
, 1992, “
Robust Time-Optimal Control of Uncertain Flexible Spacecraft
,”
J. Guid. Control
0162-3192,
15
, pp.
597
604
.
7.
Cutforth
,
C. F.
, and
Pao
,
L. Y.
, 1999, “
Modified Method for Multiple Actuator Input Shaping
,”
Proc. of American Control Conference
,
IEEE
, San Diego, CA, Vol.
1
, pp.
66
70
.
8.
Cutforth
,
C. F.
, and
Pao
,
L. Y.
, 2004, “
Adaptive input shaping for maneuvering flexible structures
,”
Automatica
0005-1098,
40
(
4
), pp.
685
693
.
9.
Tzes
,
A.
, and
Yurkovich
,
S.
, 1993, “
An Adaptive Input Shaping Control Scheme for Vibration Suppression in Slewing Flexible Structures
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
1
, pp.
114
121
.
10.
Rappole
,
B. W.
, 1992, “
Minimizing Residual Vibrations in Flexible Systems
,” CSDL-T-1144, Charles Stark Draper Laboratory, Cambridge, MA.
11.
Cho
,
J. K.
, and
Park
,
Y.
, 1995, “
Vibration Reduction in Flexible Systems Using a Time-Varying Impulse Sequence
,”
Robotica
0263-5747,
13
, pp.
305
313
.
12.
Magee
,
D. P.
, and
Book
,
W. J.
, 1993, “
Implementing Modified Command Filtering to Eliminate Multiple Modes of Vibration
,”
Proceedings of the 1993 American Control Conference
, pp.
2700
2704
.
13.
Bodson
,
M.
, 1998, “
An Adaptive Algorithm for the Tuning of Two Input Shaping Methods
,”
Automatica
0005-1098,
34
(
6
), pp.
771
776
.
14.
Park
,
Y.
, and
Chang
,
P. H.
, 2001, “
Learning Input Shaping Technique for Non-LTI Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
288
293
.
15.
Kapila
,
V.
,
Tzes
,
A.
, and
Yan
,
Q.
, 2000, “
Closed-Loop Input Shaping for Flexible Structures Using Time-Delay Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
454
460
.
16.
Smith
,
J. Y.
,
Kozak
,
K.
, and
Singhose
,
W. E.
, 2002, “
Input Shaping for a Simple Nonlinear System
,”
Proc. of American Control Conference
,
IEEE
,
Anchorage, AK
, pp.
821
826
.
17.
Kozak
,
K.
,
Ebert-Uphoff
,
I.
, and
Singhose
,
W.
, 2004, “
Locally Linearized Dynamic Analysis of Parallel Manipulators and Application of Input Shaping to Reduce Vibrations
,”
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
156
168
.
18.
Kenison
,
M.
, and
Singhose
,
W.
, 2002, “
Concurrent Design of Input Shaping and Proportional Plus Derivative Feedback Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
398
405
.
19.
Pao
,
L. Y.
, and
Cutforth
,
C. F.
, 2003, “
On Frequency-Domain and Time-Domain Input Shaping for Multi-Mode Flexible Structures
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
3
), pp.
494
497
.
20.
Singh
,
T.
, and
Vadali
,
S. R.
, 1995, “
Robust Time-Delay Control of Multimode Systems
,”
Int. J. Control
0020-7179,
62
, pp.
1319
1339
.
21.
Murphy
,
B. R.
, and
Watanabe
,
I.
, 1992, “
Digital Shaping Filters for Reducing Machine Vibration
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
, pp.
285
289
.
22.
Aldebrez
,
F. M.
,
Tokhi
,
M. O.
,
Mohamed
,
Z.
, and
Ahmad
,
M. S.
, 2003, “
Vibration Control of Pitch Movement Using Input Shaping Techniques
,”
Proc. of IEEE Emerging Technologies and Factory Automation Conference
, Lisbon, Portugal, Vol.
1
, pp.
447
452
.
23.
Singh
,
T.
, and
Vadali
,
S. R.
, 1993, “
Robust Time Delay Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
, pp.
303
306
.
24.
Bhat
,
S. P.
, and
Miu
,
D. K.
, 1990, “
Precise Point to Point Positioning Control of Flexible Structure
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
667
674
.
You do not currently have access to this content.