Abstract

The focus of this paper is on the design of shaped profiles subject to transient state constraints and terminal energy limits. The issue of robustness to modeling errors is addressed by formulating a minimax optimization problem in a linear programming framework, permitting the generation of near-globally optimal shaped profiles. To illustrate the proposed technique, a deflection-limited/residual energy constrained, controller design for flexible structures undergoing rest-to-rest maneuvers will be presented. Techniques for improving robustness by the addition of state sensitivity equations, which increases the robustness in the vicinity of the nominal model, are explored. Results for the benchmark oscillator illustrate the benefit of the proposed approach over traditional designs.

1.
Smith
,
O. J. M.
, 1957, “
Posicast Control of Damped Oscillatory Systems
,”
Proc. IRE
0096-8390,
45
, pp.
1249
1255
.
2.
Singh
,
T.
, and
Vadali
,
S. R.
, 1993, “
Robust Time-Delay Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
(
2
), pp.
303
306
.
3.
Junkins
,
J. L.
,
Rahman
,
Z. H.
, and
Bang
,
H.
, 1990, “
Near-Minimum Time Maneuvers of Flexible Vehicles: A Lyapunov Control Law Design Method
,”
Mechanics and Control of Large Flexible Structures
,
AIAA
,
Washington, DC
, pp.
565
594
.
4.
Ballhaus
,
W. L.
,
Rock
,
S. M.
, and
Bryson
,
A. E.
, 1992, “
Optimal Control of a Two-Link Flexible Robotic Manipulator Using Time-Varying Controller Gains
,” American Astronautics Society, Paper No. 92-055.
5.
Singhose
,
W. E.
,
Porter
,
L. J.
, and
Seering
,
W. P.
, 1997, “
Input Shaped Control of a Planar Gantry Crane With Hoisting
,”
Proceedings of the American Control Conference
, Albuquerque, NM.
6.
Miu
,
D. K.
, and
Bhat
,
S. P.
, 1991, “
Minimum Power and Minimum Jerk Control and Its Application in Computer Disk Drives
,”
IEEE Trans. Magn.
0018-9464,
27
(
6
), pp.
4471
4475
.
7.
Singer
,
N. C.
, and
Seering
,
W. P.
, 1990, “
Preshaping Command Inputs to Reduce System Vibrations
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
76
82
.
8.
Liu
,
Q.
, and
Wie
,
B.
, 1992, “
Robust Time-Optimal Control of Uncertain Flexible Spacecraft
,”
J. Guid. Control Dyn.
0731-5090,
15
(
3
), pp.
597
604
.
9.
Singh
,
T.
, and
Vadali
,
S. R.
, 1994, “
Robust Time-Optimal Control: Frequency Domain Approach
,”
J. Guid. Control Dyn.
0731-5090,
17
(
2
), pp.
346
353
.
10.
Banerjee
,
A. K.
,
Singhose
,
W. E.
, and
Seering
,
W. P.
, 1997, “
Slewing Flexible Spacecraft With Deflection-Limiting Input Shaping
,”
Journal of Guidance, Control, and Navigation
,
20
(
2
), pp.
291
297
.
11.
Robertson
,
M. J.
, and
Singhose
,
W. E.
, 2001, “
Generating Deflection-Limiting Commands in the Digital Domain
,”
Proceedings of the AAS/AIAA Astrodynamics Specialist Conference
.
12.
Robertson
,
M. J.
, and
Singhose
,
W. E.
, 2005, “
Closed-Form Deflection-Limiting Commands
,”
Proceedings of the American Control Conference
, Vol.
11
, pp.
2104
2109
.
13.
Robertson
,
M. J.
, and
Singhose
,
W. E.
, 2006, “
Robust Analytic Deflection-Limiting Commands
,”
Proceedings of the American Control Conference
, Vol.
11
, pp.
363
368
.
14.
Singh
,
T.
, 2002, “
Minimax Design of Robust Controllers for Flexible Structures
,”
J. Guid. Control Dyn.
0731-5090,
25
(
5
), pp.
868
875
.
15.
Tenne
,
D.
, and
Singh
,
T.
, 2004, “
Efficient Minimax Control Design for Prescribed Parameter Uncertainties
,”
J. Guid. Control Dyn.
0731-5090,
27
(
6
), pp.
1009
1016
.
16.
Fegley
,
K. A.
,
Blum
,
S.
,
Bergholm
,
J. O.
,
Calise
,
A. J.
,
Marowitz
,
J. E.
,
Porcelli
,
G.
, and
Sinha
,
L. P.
, 1971, “
Stochastic and Deterministic Design and Control via Linear and Quadratic Programming
,”
IEEE Trans. Autom. Control
0018-9286,
16
, pp.
759
766
.
17.
Sinha
,
A.
, and
Peng
,
H.
, 1992, “
Near-Minimum-Time Control of a Flexible Robot Arm via Linear Programming
,”
Int. J. Robot. Autom.
,
7
(
4
), pp.
152
160
.
18.
Driessen
,
B. J.
, and
Sadegh
,
N.
, 2001, “
Minimum-Time Control of Systems With Coulomb Friction: Near Global Optima via Mixed Integer Linear Programming
,”
Opt. Control Appl. Methods
0143-2087,
22
(
2
), pp.
51
62
.
19.
Liu
,
S.
, and
Singh
,
T.
, 1997, “
Robust Time-Optimal Control of Flexible Structures With Parametric Uncertainty
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
(
4
), pp.
743
748
.
20.
Datorro
,
J.
, 2005,
Convex Optimization and Euclidean Distance Geometry
,
Meboo Publishing
(http://meboo.convexoptimization.com/Meboo.htmlhttp://meboo.convexoptimization.com/Meboo.html), p.
52
.
21.
Singh
,
T.
, 2009,
Optimal Reference Shaping for Dynamical Systems: Theory and Applications
,
CRC
,
Boca Raton, FL
.
22.
Singhose
,
W.
,
Derezinski
,
S.
, and
Singer
,
N.
, 1996, “
Extra-Insensitive Input Shapers for Controlling Flexible Spacecraft
,”
Journal of Guidance, Control, and Navigation
,
19
(
2
), pp.
385
391
.
You do not currently have access to this content.