This paper presents a method for using reset control as an alternative way of obtaining dissipation for a class of port-Hamiltonian systems. One advantage of this approach is the simplicity of its implementation, which requires only a velocity observer. Another advantage is its robustness to modeling uncertainties, since it can be calculated independently of the plant structure. A gantry crane is selected as case study, yielding simulation and experimental results that show the good performance of this technique.
Issue Section:
Technical Briefs
Keywords:
cranes,
damping,
nonlinear control systems,
observers,
velocity control,
vibration control
References
1.
Åström
, K. J.
, 2000, “Limitations on Control System Performance
,” Eur. J. Control
, 6
, pp. 2
–20
.2.
Clegg
, J. C.
, 1958, “A Nonlinear Integrator for Servomechanisms
,” Trans. A.I.E.E.M, Part II
, 77
, pp. 41
–42
.3.
Horowitz
, I. M.
, and Rosenbaum
, P.
, 1975, “Nonlinear Design for Cost of Feedback Reduction in Systems With Large Parameter Uncertainty
,” Int. J. Control
, 24
(6
), pp. 977
–1001
.4.
Beker
, O.
, Hollot
, C. V.
, Chait
, Y.
, and Han
, H.
, 2004, “Fundamental Properties of Reset Control Systems
,” Automatica
, 40
, pp. 905
–915
.5.
Baños
, A.
, and Barreiro
, A.
, 2009, Delay-Independent Stability of Reset Systems
, IEEE Trans. Autom. Control
, 54
(2
), pp. 341
–346
.6.
Barreiro
, A.
, and Baños
, A.
, 2010, “Delay-Dependent Stability of Reset Systems
,” Automatica
, 46
(1
), pp. 216
–221
.7.
Baños
, A.
, Carrasco
, J.
, and Barreiro
, A.
, 2011, “Reset Times-Dependent Stability of Reset Control Systems
,” IEEE Trans. Autom. Control
, 56
(1
), pp. 217
–223
.8.
Carrasco
, J.
, Baños
, A.
, and van der Schaft
, A. J.
, 2010, “A Passivity-Based Approach to Reset Control Systems Stability
,” Syst. Control Lett.
, 59
(1
), pp. 18
–24
.9.
Fernández Villaverde
, A.
, Barreiro
, A.
, Baños
, A.
, and Carrasco
, J.
, 2011, “Reset Control for Passive Bilateral Teleoperation
,” IEEE Trans. Ind. Electron.
, 56
(7
), pp. 3037
–3045
.10.
Bupp
, R. T.
, Bernstein
, D. S.
, Chellaboina
, V. S.
, and Haddad
, W. M.
, 2000, “Resetting Virtual Absorbers for Vibration Control
,” J. Vib. Control
, 6
(61
), pp. 61
–83
.11.
Haddad
, W. M.
, Nersesov
, S. G.
, and Chellaboina
, V. S.
, 2003, “Energy-based Control for Hybrid Port-Controlled Hamiltonian Systems
,” Automatica
, 39
, pp. 1425
–1435
.12.
Ortega
, R.
, van der Schaft
, A. J.
, Maschke
, B.
, and Escobar
, G.
, 2002, “Interconnection and Damping Assignment Passivity-Based Control of Port-Controlled Hamiltonian Systems
,” Automatica
, 38
, pp. 585
–596
.13.
Ortega
, R.
, van der Schaft
, A. J.
, Maschke
, B.
, and Escobar
, G.
, 1999, “Energy-Shaping of Port-Controlled Hamiltonian Systems by Interconnection
,” Proceedings of the CDC 1999
, Phoenix, AZ
, pp. 1646
–1651
.14.
Hogan
, N.
, 1985, “Impedance Control: An Approach to Manipulation, Parts I-III
,” ASME J. Dyn. Syst., Meas., Control
, 107
(1
), pp. 1
–24
.15.
van der Schaft
, A. J.
, 2000, L2—Gain and Passivity Techniques in Nonlinear Control
, 2nd ed., Springer-Verlag
, London
.16.
Haddad
, W. M.
, Chellaboina
, V. S.
, and Nersesov
, S. G.
, 2006, Impulsive and Hybrid Dynamical Systems—Stability, Dissipativity and Control
, Princeton Series in Applied Mathematics
, Princeton University Press
, Princeton, NJ
.17.
Aghannan
, N.
, and Rouchon
, P.
, 2003, An Intrinsic Observer for a Class of Lagrangian Systems
, IEEE Trans. Autom. Control
, 48
(6
), pp. 936
–945
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.