This paper presents a new methodology for the design of power oscillation dampers (PODs) for synchronous generators connected to distribution networks. The proposed methodology provides controllers capable of fulfilling robustness requirements and also making an effective trade-off between oscillation damping enhancement and generator terminal voltage performance. A description of the nonlinear dynamical model to be controlled in the form of norm-bounded linear differential inclusions (NLDIs) is adopted at the design stage of the controller. This is different from most of the existing POD design methods, where the control design is essentially based on a simplification of the nonlinear dynamical model in the form of linear time-invariant (LTI) models. The use of NLDIs allows us to consider the system nonlinearities as model uncertainties, and then we take into account such uncertainties at the controller design stage using a robust control methodology. Once that this NLDI takes the nonlinear behaviors of the system into account, it can better represent the relatively large excursions that occur in the system states, allowing us to add a constrain to the control problem formulation imposing a certain acceptable performance to the generator terminal voltage during transients. The proposed algorithm can be easily handled by using linear matrix inequalities (LMIs) solvers. A cogeneration plant of 10 MW added to a distribution network constituted by a feeder and six buses is adopted as a test system. The results show that the two designed objectives are quite satisfactorily achieved.

References

1.
Edwards
,
F. V.
,
Dudgeon
,
G. J. W.
,
McDonald
,
J. R.
, and
Leithead
,
W. E.
,
2000
, “
Dynamics of Distribution Networks With Distributed Generation
,”
Proceedings of the
IEEE
PES General Meeting. 10.1109/PESS.2000.867515
2.
Kuiava
,
R.
,
Ramos
,
R. A.
,
de Oliveira
,
R. V.
, and
Bretas
,
N. G.
,
2008
, “
An Analysis of the Potential Impacts of Electromechanical Oscillations on the Stability and Power Quality of Distributed Generation Systems
,”
Proceedings of the
IEEE
PES General Meeting.10.1109/PES.2008.4596529
3.
Salim
,
R. H.
,
Kuiava
,
R.
,
Ramos
,
R. A.
, and
Bretas
,
N. G.
,
2010
, “
Impact of Power Factor Regulation on Small-Signal Stability of Power Distribution Systems With Distributed Synchronous Generators
,”
Euro. Trans. Electr. Power
,
21
(
7
), pp.
1923
1940
.10.1002/etep.504
4.
Ramos
,
R. A.
,
Alberto
,
L. F. C.
, and
Bretas
,
N. G.
,
2004
, “
A New Methodology for the Coordinated Design of Robust Decentralized Power System Damping Controllers
,”
IEEE Trans. Power Syst.
,
19
(
1
), pp.
444
454
.10.1109/TPWRS.2003.820690
5.
Basler
,
M. J.
, and
Schaefer
,
R. C.
,
2008
, “
Understanding Power System Stability
,”
IEEE Trans. Ind. Appl.
,
44
(
2
), pp.
463
474
.10.1109/TIA.2008.916726
6.
Ortega
,
R.
,
Galaz
,
M.
,
Astolfi
,
A.
,
Sun
,
Y.
, and
Shen
,
T.
,
2005
, “
Transient Stabilization of Multimachine Power Systems With Nontrivial Transfer Conductances
,”
IEEE Trans. Autom. Control
,
50
(
1
), pp.
60
75
.10.1109/TAC.2004.840477
7.
Giusto
,
A.
,
Ortega
,
R.
, and
Stankovic
,
A.
,
2006
, “
On Transient Stabilization of Power Systems: A Power–Shaping Solution for Structure–Preserving Models
,” Proceedings of the
IEEE
Conference on Decision and Control, IEEE
. 10.1109/CDC.2006.376967
8.
Messina
,
A. R.
,
Ramirez
,
J. M.
, and
Canedo
,
J. M.
,
1998
, “
An Investigation on the Use of Power System Stabilizers for Damping Inter-Area Oscillations in Longitudinal Power Systems
,”
IEEE Trans. Power Syst.
,
13
(
2
), pp.
552
559
.10.1109/59.667382
9.
Abdel-Magid
,
Y. L.
,
Abido
,
M. A.
,
Al-Baiyat
,
S.
, and
Mantawy
,
A. H.
,
1999
, “
Simultaneous Stabilization of Multimachine Power Systems via Genetic Algorithms
,”
IEEE Trans. Power Syst.
,
14
(
4
), pp.
1428
1439
.10.1109/59.801907
10.
Gibbard
,
M. J.
,
Martins
,
N.
,
Sanchez-Gasca
,
J. J.
,
Uchida
,
N.
,
Vittal
,
V.
, and
Wang
,
L.
,
2001
, “
Recent Applications of Linear Analysis Techniques
,”
IEEE Trans. Power Syst.
,
16
(
1
), pp.
154
162
.10.1109/59.910792
11.
Bollinger
,
K. E.
, and
Ao
,
S. Z.
,
1996
, “
PSS Performance as Affected by Its Output Limiter
,”
IEEE Trans. Energy Convers.
,
11
(
1
), pp.
118
124
.10.1109/60.486585
12.
Ferraz
,
J. C. R.
,
Soares
,
J. M. C.
,
Zeni
,
N., Jr.
, and
Taranto
,
G. N.
,
2002
, “
Adverse Increase in Generator Terminal Voltage and Reactive Power Transients Caused by Power System Stabilizers
,” Proceedings of the
IEEE
PES Winter Meeting, IEEE
. 10.1109/PESW.2002.985104
13.
Zhao
,
Q.
, and
Jiang
,
J.
,
1995
, “
Robust Controller Design for Generator Excitation Systems
,”
IEEE Trans. Energy Convers.
,
10
(
2
), pp.
201
209
.10.1109/60.391883
14.
Hu
,
T.
,
2007
, “
Nonlinear Control Design for Linear Differential Inclusions via Convex Hull of Quadratics
,”
Automatica
,
43
(
4
), pp.
685
692
.10.1016/j.automatica.2006.10.015
15.
Pyatnitskiy
,
E. S.
, and
Rapoport
,
L. B.
,
1996
, “
Criteria of Asymptotic Stability of Differential Inclusions and Periodic Motions of Time-Varying Nonlinear Control Systems
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
,
43
(
3
), pp.
219
229
.10.1109/81.486446
16.
Hossain
,
M. J.
,
Pota
,
H. R.
,
Ugrinovskii
,
V.
, and
Ramos
,
R. A.
,
2009
, “
A Robust STATCOM Control to Augment LVRT Capability of Fixed Speed Wind Turbines
,” Proceedings of the
IEEE
Conference on Decision and Control
. 10.1109/CDC.2009.5399579
17.
de Oliveira
,
R. V.
,
Kuiava
,
R.
,
Ramos
,
R. A.
, and
Bretas
,
N. G.
,
2009
, “
Automatic Tuning Method for the Design of Supplementary Damping Controllers for Flexible Alternating Current Transmission System Devices
,”
IET Gener. Transm. Distrib.
,
3
(
10
), pp.
919
929
.10.1049/iet-gtd.2008.0424
18.
Pagola
,
F. L.
,
Pérez-Arriaga
,
I. J.
, and
Verghese
,
G. C.
,
1989
, “
On Sensitivities, Residues and Participations: Applications to Oscillatory Stability Analysis and Control
,”
IEEE Trans. Power Syst.
,
4
(
1
), pp.
278
285
.10.1109/59.32489
19.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnam
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
, Society for Industrial and Applied Mathematics, Philadelphia, PA.
20.
Freitas
,
W.
,
Vieira
,
J. C. M.
,
Morelato
,
A.
,
Silva
,
L. C. P.
,
Costa
,
V. F.
, and
Lemos
,
F. A. B.
,
2006
, “
Comparative Analysis Between Synchronous and Induction Machines for Distributed Generation Applications
,”
IEEE Trans. Power Syst.
,
21
(
1
), pp.
301
311
.10.1109/TPWRS.2005.860931
21.
Hsu
,
C. T.
,
2003
, “
Transient Stability Study of the Large Synchronous Motors Starting and Operating for the Isolated Integrated Steel-Making Facility
,”
IEEE Trans. Ind. Appl.
,
39
(
5
), pp.
1436
1441
.10.1109/TIA.2003.816534
22.
Kuiava
,
R.
,
2010
, “
Projeto de controladores para o amortecimento de oscilações em sistemas elétricos com geração distribuida
,” Ph.D. thesis, EESC/USP, Sao Carlos,
Brazil
(in Portuguese).
23.
Salim
,
R. H.
,
Oleskovicz
,
M.
, and
Ramos
,
R. A.
,
2010
, “
Assessment of Voltage Fluctuations Induced by Electromechanical Oscillations in Distributed Generation Systems
,” Proceedings of the
IEEE
PES General Meeting, IEEE
.10.1109/PES.2010.5588108
24.
Ramos
,
R. A.
,
2009
, “
Stability Analysis of Power Systems Considering AVR and PSS Output Limiters
,”
Int. J. Electr. Power Energy Syst.
,
31
(
4
), pp.
153
159
.10.1016/j.ijepes.2008.10.017
25.
Zemouche
,
A.
,
Boutayeb
,
M.
, and
Bara
,
G. I.
,
2005
, “
Observer Design for Nonlinear Systems: An Approach Based on the Differential Mean Value Theorem
,” Proceedings of the
IEEE
Conference on Decision and Control, IEEE
.10.1109/CDC.2005.1583180
26.
Vidyasagar
,
M.
,
1993
,
Nonlinear Systems Analysis
,
Prentice-Hall, Englewood Cliffs, NJ.
27.
Kuiava
,
R.
,
Ramos
,
R. A.
, and
Pota
,
H. R.
,
2012
, “
A New Approach for Modeling and Control of Nonlinear Systems via Norm-bounded Linear Differential Inclusions
,”
Rev. SBA Controle Autom.
,
23
(
4
), pp.
387
403
.10.1590/S0103-17592012000400001
28.
Khargonekar
,
P. P.
,
Petersen
,
I. R.
, and
Zhou
,
K.
,
1990
, “
Robust Stabilization of Uncertain Linear Systems: Quadratic Stabilizability and Control Theory
,”
IEEE Trans. Autom. Control
,
35
(
3
), pp.
356
361
.10.1109/9.50357
29.
Chiali
,
M.
,
Gahinet
,
P.
, and
Apkarian
,
P.
,
1999
, “
Robust Pole Placement in LMI Regions
,”
IEEE Trans. Autom. Control
,
44
(
12
), pp.
2257
2270
.10.1109/9.811208
30.
de Oliveira
,
M. C.
,
Geromel
,
J. C.
, and
Bernussou
,
J.
,
2000
, “
Design of Dynamic Output Feedback Decentralized Controllers via a Separation Procedure
,”
Int. J. Control
,
73
(
5
), pp.
371
381
.10.1080/002071700219551
31.
Sturm
,
J. F.
,
1999
, “
Using SeDuMi 1.02, A MATLAB Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
,
11
(
1
), pp.
625
653
.10.1080/10556789908805766
32.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,” Proceedings of the
IEEE
International Symposium Computer Aided Control System Design
.10.1109/CACSD.2004.1393890
33.
Pal
,
B.
, and
Chaudhuri
,
B.
,
2005
,
Robust Control in Power Systems
,
Springer Science+Business Media
,
New York
.
You do not currently have access to this content.