This paper addresses sufficient conditions for asymptotic stability of classes of nonlinear switched systems with external disturbances and arbitrarily fast switching signals. It is shown that asymptotic stability of such systems can be guaranteed if each subsystem satisfies certain variants of observability or 0-distinguishability properties. In view of this result, further extensions of LaSalle stability theorem to nonlinear switched systems with arbitrary switching can be obtained based on these properties. Moreover, the main theorems of this paper provide useful tools for achieving asymptotic stability of dynamic systems undergoing Zeno switching.

References

1.
Lin
,
H.
, and
Antsaklis
,
P. J.
,
2009
, “
Stability and Stabilizability of Switched Linear System: A Survey of Recent Results
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
308
322
.10.1109/TAC.2008.2012009
2.
Shorten
,
R.
,
Wirth
,
F.
,
Mason
,
O.
,
Wulff
,
K.
, and
King
,
C.
,
2007
, “
Stability Criteria for Switched and Hybrid Systems
,”
SIAM Rev.
,
49
(
4
), pp.
545
592
.10.1137/05063516X
3.
Lee
,
T. C.
, and
Jiang
,
Z. P.
,
2009
, “
Uniform Asymptotic Stability of Nonlinear Switched Systems With an Application to Mobile Robots
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1235
1252
.10.1109/TAC.2008.923688
4.
Hespanha
,
J. P.
, and
Morse
,
A. S.
,
1999
, “
Stability of Switched Systems With Average Dwell-Time
,”
Proceedings of the 38th IEEE Conf. on Decision and Control
, pp.
2655
2660
.
5.
Hespanha
,
J. P.
,
2004
, “
Uniform Stability of Switched Linear Systems: Extensions of LaSalle's Invariance Principle
,”
IEEE Trans. Autom. Control
,
49
(
3
), pp.
470
482
.10.1109/TAC.2004.825641
6.
Dayawansa
,
W. P.
, and
Martin
,
C. F.
,
1999
, “
A Converse Lyapunov Theorem for a Class of Dynamical Systems Which Undergo Switching
,”
IEEE Trans. Autom. Control
,
44
(
4
), pp.
751
760
.10.1109/9.754812
7.
Liberzon
,
D.
, and
Morse
,
A. S.
,
1999
, “
Basic Problems in Stability and Design of Switched Systems
,”
IEEE Control Syst. Mag.
,
19
(
5
), pp.
59
70
.10.1109/37.793443
8.
Hetel
,
L.
,
Daafouz
,
J.
, and
Iung
,
C.
,
2006
, “
Stabilization of Arbitrary Switched Linear Systems With Unknown Time-Varying Delays
,”
IEEE Trans. Autom. Control
,
51
(
10
), pp.
1668
1674
.10.1109/TAC.2006.883030
9.
Gurvits
,
L.
,
Shorten
,
R.
, and
Mason
,
O.
,
2007
, “
On the Stability of Switched Positive Linear Systems
,”
IEEE Trans. Autom. Control
,
52
(
6
), pp.
1099
1103
.10.1109/TAC.2007.899057
10.
Johansson
,
K. H.
,
Lygeros
J.
,
Sastry
,
S.
, and
Egerstedt
,
M.
,
1999
, “
Simulation of Zeno Hybrid Automata
,”
IEEE Conference on Decision and Control
,
Phoenix, AZ
.
11.
Zhang
,
J.
,
Johansson
,
K. H.
,
Lygeros
,
J.
, and
Sastry
,
S.
,
2001
, “
Zeno Hybrid Systems
,”
Int. J. Robust Nonlinear Control
,
11
, pp.
435
451
.10.1002/rnc.592
12.
Ames
,
A. D.
,
Abate
,
A.
, and
Sastry
,
S.
,
2007
, “
Sufficient Conditions for the Existence of Zeno Behavior in Nonlinear Hybrid Systems via Constant Approximations
,”
Proceedings of IEEE Conference Decision and Control
, pp.
4033
4038
.
13.
Ames
,
A. D.
,
Tabuada
,
P.
, and
Sastry
,
S.
,
2006
, “
On the stability of Zeno Equilibria
,”
Hybrid Systems: Computation and Control (Lecture Notes in Computer Science)
,
Springer-Verlag
,
NewYork
, pp.
34
48
.
14.
Ames
,
A. D.
,
Zheng
,
H.
,
Gregg
,
R. D.
, and
Sastry
,
S.
,
2006
, “
Is There Life After Zeno? Taking Executions Past The Breaking (Zeno) Point
,”
Proceedings of American Control Conference
, pp.
2652
2657
.
15.
Camlibel
,
M. K.
, and
Schumacher
,
J. M.
,
2001
, “
On the Zeno Behavior of Linear Complementarity Systems
,”
Proceedings of IEEE Conference Decision Control
, pp.
346
351
.
16.
Goebel
,
R.
, and
Teel
,
A. R.
,
2008
, “
Lyapunov Characterization of Zeno Behavior in Hybrid Systems
,”
Proceedings of 47th IEEE Conference Decision Control
, pp.
2752
2757
.
17.
Goebel
,
R.
, and
Teel
,
A. R.
,
2008
, “
Zeno Behavior in Homogeneous Hybrid Systems
,”
Proc. 47th IEEE Conference Decision Control
, pp.
2758
2763
.
18.
Or
,
Y.
, and
Teel
,
A. R.
,
2011
, “
Zeno Stability of the Set-Valued Bouncing Ball
,”
IEEE Trans. Autom. Control
,
56
(
2
), pp.
447
452
.10.1109/TAC.2010.2090411
19.
Mancilla
,
J. L.
, and
Garcia
,
R. A.
,
2009
, “
Input-to-Output Stability Properties of Switched Perturbed Nonlinear Control Systems
,”
Lat. Am. Appl. Res.
,
39
, pp.
239
244
.
20.
Mancilla-Aguilar
,
J. L.
,
Garcia
,
R.
,
Sontag
,
E.
, and
Wang
,
Y.
,
2004
, “
Representation of Switched Systems by Perturbed Control Systems
,”
43rd IEEE Conference on Decision and Control
, pp.
3259
3264
.
21.
Zheng
,
G.
,
Yu
,
L.
,
Boutat
,
D.
, and
Barbot
,
J.-P.
,
2009
, “
Algebraic Observer for a Class of Switched Systems With Zeno Phenomenon
,”
Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai
,
P.R. China
, pp.
3876
3881
.
22.
Yu
,
L.
,
Barbot
,
J.-P.
,
Boutat
,
D.
, and
Benmerzouk
,
D.
,
2011
, “
Observability Forms for Switched Systems With Zeno Phenomenon or High Switching Frequency
,”
IEEE Trans. Autom. Control
,
56
(
2
), pp.
436
441
.10.1109/TAC.2010.2090066
23.
Sontag
,
E. D.
,
1998
,
Mathematical Control Theory, Deterministic Finite Dimensional Systems
, 2nd ed.,
Springer-Verlag
,
New York
.
24.
Hespanha
,
J. P.
,
Liberzon
,
D.
,
Angeli
,
D.
, and
Sontag
,
E.
,
2005
, “
Nonlinear Norm-Observability Notions and Stability of Switched Systems
,”
IEEE Trans. Autom. Control
,
50
(
2
), pp.
154
168
.10.1109/TAC.2004.841937
25.
Mancilla-Aguilar
,
J. L.
,
Garcia
,
R.
,
Sontag
,
E.
, and
Wang
,
Y.
,
2005
, “
On the Representation of Switched Systems With Inputs by Perturbed Control Systems
,”
Nonlinear Anal.
,
60
, pp.
1111
1150
.10.1016/j.na.2004.10.012
26.
Cichon
,
M.
,
Kubiaczyk
,
I.
, and
Sikorska
,
A.
,
2004
, “
The Henstock-Kurweil-Pettis Integral and Existence Theorems for the Cauchy Problem
,”
Czeckoslovak Math. J.
,
54
, pp.
279
289
.10.1023/B:CMAJ.0000042368.51882.ab
27.
Branicky
,
M. S.
,
1998
, “
Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
475
482
.10.1109/9.664150
28.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.