An integrated high-speed valve switching and pump output control scheme are developed for precision maneuvering of underwater vehicles. High-speed Coanda-effect valves combined with a centrifugal pump allow for precise control of thrust force using a unique pulse width modulation (PWM) control scheme, where both pulse width and pulse height are controlled in a coordinated manner. Dead zones and other complex nonlinear dynamics of traditional propeller thrusters and water jet pumps are avoided with use of the integrated pump-valve control. Three control algorithms for coordinating valve switching and pump output are presented. A simplified nonlinear hydrodynamic model of underwater vehicles is constructed, and design trade-offs between PWM frequency and pulse height, with regard to steady state oscillations, are addressed. The control algorithms are implemented on a prototype underwater vehicle and the theoretical results are verified through experiments.

References

1.
Ridao
,
P.
,
Carreras
,
M.
,
Ribas
,
D.
, and
Garcie
,
R.
,
2010
, “
Visual Inspection of Hydroelectric Dams Using an Autonomous Underwater Vehicle
,”
J. Field Rob.
,
27
(
6
), pp.
759
778
.10.1002/rob.20351
2.
Asakawa
,
K.
,
Kojima
,
J.
,
Ito
,
Y.
,
Takagi
,
S.
,
Shirasaki
,
Y.
, and
Kato
,
N.
,
1996
, “
Autonomous Underwater Vehicle AQUA EXPLORER 1000 For Inspection of Underwater Cables
,”
Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology
, pp.
10
17
.
3.
Bingham
,
B.
,
Foley
,
B.
,
Singh
,
H.
,
Camilli
,
R.
,
Delaporta
,
K.
,
Eustice
,
R.
,
Mallios
,
A.
,
Mindell
,
D.
,
Roman
,
C.
, and
Sakellariou
,
D.
,
2010
, “
Robotic Tools for Deep Water Archaeology: Surveying an Ancient Shipwreck With an Autonomous Underwater Vehicle
,”
J. Field Rob.
,
27
(
6
), pp.
702
717
.10.1002/rob.20350
4.
Halme
,
A.
,
Vainio
,
M.
,
Appelqvist
,
P.
,
Jakubik
,
P.
,
Schonberg
,
T.
, and
Visala
,
A.
,
1997
, “
Underwater Robot Society Doing Internal Inspection and Leak Monitoring of Water Systems
,”
SPIE
,
3209
, pp.
190
199
.10.1117/12.287637
5.
Ramirez
,
J.
,
Vasquez
,
R.
,
Gutierrez
,
L.
, and
Florez
,
D.
,
2007
, “
Mechanical/Naval Design of an Underwater Remotely Operated Vehicle (ROV) for Surveillance and Inspection of Port Facilities
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, pp.
1
10
.
6.
Vaganay
,
J.
,
Elkins
,
M.
,
Wilcox
,
S.
,
Hover
,
F.
,
Damus
,
R.
,
Desset
,
S.
,
Morash
,
J.
, and
Polidoro
,
V.
,
2005
, “
Ship Hull Inspection by Hull Relative Navigation and Control
,”
Proceedings of the IEEE/MTS Oceans Conference
, Vol.
1
, pp.
761
766
.
7.
Koji
,
K.
,
1999
, “
Underwater Inspection Robot—AIRIS 21
,”
Nucl. Eng. Des.
,
188
, pp.
367
371
.10.1016/S0029-5493(99)00045-X
8.
Cho
,
B.
,
Byun
,
S.
,
Shin
,
C.
,
Yang
,
J.
,
Song
,
S.
, and
Oh
,
J.
,
2004
, “
KeproVt: Underwater Robotic System for Visual Inspection of Nuclear Reactor Internals
,”
Nucl. Eng. Des.
,
231
, pp.
327
335
.10.1016/j.nucengdes.2004.03.012
9.
Yoerger
,
D.
,
Cooke
,
J.
, and
Slotine
,
J.
,
1990
, “
The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation Into Control System Design
,”
IEEE J. Ocean. Eng.
,
15
(
3
), pp.
167
178
.10.1109/48.107145
10.
Kim
,
J.
, and
Chung
,
W.
,
2006
, “
Accurate and Practical Thruster Modeling for Underwater Vehicles
,”
Ocean Eng.
,
33
, pp.
566
586
.10.1016/j.oceaneng.2005.07.008
11.
Hanai
,
A.
,
Rosa
,
K.
,
Choi
,
S.
, and
Yuh
,
J.
,
2004
, “
Experimental Analysis and Implementation of Redundant Thrusters for Underwater Robots
,”
Proceedings of the IEEE International Conference on Intelligent Robots and Systems
, Vol.
2
, pp.
1109
1114
.
12.
Bessa
,
W.
,
Dutra
,
M.
, and
Kreuzer
,
E.
,
2006
, “
Thruster Dynamics Compensation for the Positioning of Underwater Robotic Vehicles Through a Fuzzy Sliding Mode Based Approach
,”
ABCM Symposium Series in Mechatronics
, Vol.
2
, pp.
605
612
.
13.
Kopman
,
V.
,
Cavaliere
,
N.
, and
Porfiri
,
M.
,
2012
, “
MASUV-1: A Miniature Underwater Vehicle With Multidirectional Thrust Vectoring for Safe Animal Interactions
,”
IEEE/ASME Trans. Mechatron.
,
17
(
3
), pp.
563
571
.10.1109/TMECH.2011.2108307
14.
Korde
,
U.
,
2004
, “
Study of a Jet-Propulsion Method for an Underwater Vehicle
,”
Ocean Eng.
,
31
, pp.
1205
1218
.10.1016/j.oceaneng.2004.01.001
15.
Lin
,
X.
,
Guo
,
S.
,
Tanaka
,
K.
, and
Hata
,
S.
,
2011
, “
Development of a Spherical Underwater Robot
,”
Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering
, pp.
662
665
.
16.
Thomas
,
A.
,
Milano
,
M.
,
G'Sell
,
M.
,
Fischer
,
K.
, and
Burdick
,
J.
,
2005
, “
Synthetic Jet Propulsion for Small Underwater Vehicles
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
181
187
.
17.
Krieg
,
M.
, and
Mohseni
,
K.
,
2008
, “
Thrust Characterization of a Bioinspired Vortex Ring Thruster for Locomotion of Underwater Robots
,”
IEEE J. Ocean. Eng.
,
33
(
2
), pp.
123
132
.10.1109/JOE.2008.920171
18.
Krieg
,
M.
, and
Mohseni
,
K.
,
2010
, “
Dynamic Modeling and Control of Biologically Inspired Vortex Ring Thrusters for Underwater Robot Locomotion
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
542
553
.10.1109/TRO.2010.2046069
19.
y Alvarado
,
P. V.
, and
Youcef-Toumi
,
K.
,
2005
, “
Design of Machines With Compliant Bodies for Biomimetic Locomotion in Liquid Environments
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
3
), pp.
3
13
.10.1115/1.2168476
20.
Chen
,
Z.
,
Shatara
,
S.
, and
Tan
,
X.
,
2010
, “
Modeling of Biomimetic Robotic Fish Propelled by an Ionic Polymer-Metal Composite Caudal Fin
,”
IEEE/ASME Trans. Mechatron.
,
15
(
3
), pp.
448
459
.10.1109/TMECH.2009.2027812
21.
Aureli
,
M.
,
Kopman
,
V.
, and
Porfiri
,
M.
,
2010
, “
Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites
,”
IEEE/ASME Trans. Mechatron.
,
15
(
4
), pp.
603
614
.10.1109/TMECH.2009.2030887
22.
Guo
,
S.
,
Fukuda
,
T.
, and
Asaka
,
K.
,
2003
, “
A New Type of Fish-Like Underwater Microrobot
,”
IEEE/ASME Trans. Mechatron.
,
8
(
1
), pp.
136
141
.10.1109/TMECH.2003.809134
23.
Kopman
,
V.
, and
Porfiri
,
M.
,
2013
, “
Design, Modeling, and Characterization of a Miniature Robotic Fish for Research and Education in Biomimetics and Bioinspiration
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
471
483
.10.1109/TMECH.2012.2222431
24.
Strefling
,
P.
,
Hellum
,
A.
, and
Mukherjee
,
R.
,
2012
, “
Modeling, Simulation, and Performance of a Synergistically Propelled Icthyoid
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
471
483
.10.1109/TMECH.2011.2172950
25.
Willie
,
R.
, and
Fernholz
,
H.
,
1965
, “
Report on the First European Mechanics Colloquium, on the Coanda Effect
,”
J. Fluid Mech.
,
23
(
4
), pp.
801
819
.10.1017/S0022112065001702
26.
Metral
,
A.
, and
Zerner
,
F.
,
1948
, “
L'effet Coanda
,”
Publications Scientifique et Techniques du Ministere del'Air
, Vol.
218
.
27.
Kirshner
,
J.
,
1975
,
Design Theory of Fluidic Components
,
Academic Press
,
New York
.
28.
Xu
,
Y.
,
Hunter
,
I.
,
Hollarbach
,
J.
, and
Bennett
,
D.
,
1991
, “
An Airjet Actuator System for Identification of Human Arm Joint Mechanical Properties
,”
IEEE Trans. Biomed. Eng.
,
38
(
11
), pp.
1111
1122
.10.1109/10.99075
29.
Mason
,
M.
, and
Crowther
,
W.
,
2002
, “
Fluidic Thrust Vectoring of Low Observable Aircraft
,”
Proceedings of the CEAS Aerospace Aerodynamic Research Conference
, Vol.
13
, pp.
1
7
.
30.
Chen
,
R.
,
Haung
,
Q.
, and
Lucas
,
G.
,
1998
, “
Theoretical and Experimental Study of a Fluidic Device as a Fuel Injector for Natural Gas Engines
,”
Proceedings of the Instrumentation Mechanical Engineers
, Vol.
212
, pp.
215
226
.
31.
Mazumdar
,
A.
, and
Asada
,
H.
,
2011
, “
A Compact Underwater Vehicle Using High Bandwidth Coanda-Effect Valves for Low Speed Precision Maneuvering in Cluttered Environments
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, May 9–13, pp.
1544
1550
.
32.
Mazumdar
,
A.
,
Lozano
,
M.
,
Fittery
,
A.
, and
Asada
,
H.
,
2012
, “
A Compact, Maneuverable, Underwater Robot for Direct Inspection of Nuclear Power Piping Systems
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, May 14–18, pp.
2818
2823
.
33.
Mazumdar
,
A.
, and
Asada
,
H.
,
2012
, “
Valve-PWM Control of Integrated Pump-Valve Propulsion Systems for Highly Maneuverable Underwater Vehicles
,”
Proceedings of the American Controls Conference
, pp.
5414
5420
.
34.
Morel
,
Y.
, and
Leonessa
,
A.
,
2010
, “
Indirect Adaptive Control of a Class of Marine Vehicles
,”
Int. J. Adapt. Control Signal Process.
,
24
, pp.
261
274
.10.1002/acs.1128
35.
Leonessa
,
A.
, and
Poirrier
,
R.
,
2001
, “
Adaptive Control of Marine Thrusters
,”
Proceedings of the IEEE/MTS OCEANS Conference
, pp.
474
481
.
36.
Yoerger
,
D.
, and
Slotine
,
J.
,
1991
, “
Adaptive Sliding Control of an Experimental Underwater Vehicle
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2746
2751
.
37.
Jeon
,
S.
, and
Jung
,
S.
,
2012
, “
Hardware-in-the-Loop Simulation for the Reaction Control System Using PWM-Based Limit Cycle Analysis
,”
IEEE Trans. Control Syst. Technol.
,
20
(
2
), pp.
538
545
.10.1109/TCST.2011.2117427
38.
Jeong
,
H.
, and
Kim
,
H.
,
2002
, “
Experimental Based Analysis of the Pressure Control Characteristics of an Oil Hydraulic Three-Way On/Off Solenoid Valve Controlled by PWM Signal
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(
1
), pp.
196
205
.10.1115/1.1433483
39.
Suzuki
,
T.
,
Ueno
,
T.
, and
Hori
,
N.
,
2005
, “
Experimental Verification of PEA-Based PWM Control Using On-Off Type Air-Jet Thrusters
,”
Proceedings of the International Conference on Information and Automation
, pp.
1
6
.
40.
Fittery
,
A.
,
Mazumdar
,
A.
,
Lozano
,
M.
, and
Asada
,
H.
,
2012
, “
Omni-Egg: A Smooth, Spheroidal, Appendage Free Underwater Robot Capable of 5DOF Motions
,”
Proceedings of the IEEE/MTS Oceans Conference
, pp.
1
5
.
You do not currently have access to this content.