The paper focuses on the dynamics and control of the nondeformable and deformable four-bar mechanism (three of the bars are mobile and one is fixed), this being a subsystem of the micromechanical flying insects' (MFIs) thorax. The control of the mechanism (six-order system described by Lagrange equations) is initially achieved by using a proportional-derivative (PD) control law, a Newton–Raphson type algorithm, and the Lyapunov theory. Because the thorax's dynamics is strongly nonlinear and is characterized by fast time varying coefficients, the PD control law cannot always guarantee small overshoot and angular rates; to overcome this drawback, over the control law PD component we superpose a neural adaptive component which compensate the error of the global nonlinearity's approximation associated to the thorax's dynamics. The two obtained control systems are validated by complex numerical simulations.

References

1.
Avadhanula
,
S.
,
Wood
,
R. J.
,
Campolo
,
D.
, and
Fearing
,
R. S.
,
2002
, “
Dynamically Tuned Design of the MFI Thorax
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, Washington, DC, May 11–15, pp.
52
59
.
2.
Zhang
,
W.
,
Li
,
Q.
, and
Guo
,
L.
,
1999
, “
Integrated Design of Mechanical Structure and Control Algorithm for a Programmable Four Bare Linkage
,”
IEEE/ASME Trans. Mechatronics
,
4
(
1
), pp.
354
362
.10.1109/3516.809514
3.
Sitti
,
M.
,
2003
, “
Piezoelectrically Actuated Four-Bar Mechanism With Two Flexible Links for Micromechanical Flying Insect Thorax
,”
IEEE/ASME Trans. Mech.
,
8
(
1
), pp.
26
36
.10.1109/TMECH.2003.809126
4.
Sitti
,
M.
,
2001
, “
PZT Actuated Four Bar Mechanism With Two Flexible Links for Micromechanical Flying Insects Thorax
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Korea, pp.
3893
3900
.
5.
Sitti
,
M.
,
Campolo
,
D.
,
Yan
,
J.
, and
Fearing
,
R. S.
,
2001
, “
Development of PZD and PZN—PT Based Unimorph Actuators for Micromechanical Flapping Mechanism
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Korea, pp.
3839
3846
.
6.
Wang
,
Q.
,
Zhang
,
B. X.
,
Liu
,
R.
, and
Cross
,
L.
,
1999
, “
Nonlinear Piezoelectric Behavior of Ceramic Bending Mode Actuators Under Strong Electric Fields
,”
J. Appl. Phys.
,
86
(
6
), pp.
3352
3360
.10.1063/1.371213
7.
Wang
,
Q.
,
Du
,
X.
,
Xu
,
B.
, and
Cross
,
L.
,
1999
, “
Electromechanical Coupling and Output Efficiency of Piezoelectric Bending Actuators
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
46
(
3
), pp.
638
646
.10.1109/58.764850
8.
Yan
,
J.
,
Dikinson
,
M.
,
Sitti
,
M.
,
Su
,
T.
, and
Fearing
,
R. S.
,
2002
, “
Wing Transmission for a Micromechanical Flying Insect
,”
J. Micromech.
,
1
(
3
), pp.
221
237
.10.1163/156856301760132123
9.
Bidakhvidi
,
M. A.
,
Vanlanduit
,
S.
,
Shirzadeh
,
R.
, and
Vucinic
,
D.
,
2012
, “
Experimental and Computational Analysis of the Flow Induced by a Piezoelectric Fan
,”
Proceedings of the 15th International Symposium on Flow Visualization
, Minsk, Belarus.
10.
Wu
,
F. X.
,
Zhang
,
W. J.
,
Li
,
Q.
, and
Oniang
,
P. R.
,
2002
, “
Integrated Design and PD Control of High-Speed Closed-Loop Mechanisms
,”
ASME J. Dyn. Syst., Meas. Control
,
124
(
4
), pp.
522
528
.10.1115/1.1513179
11.
Fearing
,
R.
,
Chiang
,
K.
,
Dickinson
,
M.
,
Pick
,
D.
,
Sitti
,
M.
, and
Yan
,
I.
,
2000
, “
Transmission Mechanism for Micromechanical Flying Insects
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, SUA, San Francisco, CA, Apr. 24–28, pp.
1509
1516
.
12.
Hines
,
L.
,
Campolo
,
D.
, and
Sitti
,
M.
,
2013
, “
Lift-off of a Motor-Driven Flapping Wing Micro Aerial Vehicle Capable of Resonance
,”
IEEE Trans. Rob.
,
30
(1), pp.
220
232
.
13.
Hines
,
L.
,
Arahagi
,
V.
, and
Sitti
,
M.
,
2012
, “
Shape Memory Polymer—Based Flexure Stiffness Control in Miniature Flapping-Wing Robot
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
987
990
.10.1109/TRO.2012.2197313
14.
Sahai
,
R.
,
Galloway
,
K. C.
, and
Wood
,
R. J.
,
2013
, “
Elastic Element Integration for Improved Flapping—Wing Micro Air Vehicle Performance
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
32
41
.10.1109/TRO.2012.2218936
15.
Arahagi
,
V.
,
Hines
,
L.
, and
Sitti
,
M.
,
2013
, “
A Simulation and Design Tool for a Passive Rotation Flapping Wing Mechanism
,”
IEEE Trans. Rob.
,
18
(
2
), pp.
787
798
.10.1109/TMECH.2012.2185707
16.
Shimozama
,
I.
,
Miura
,
H.
,
Suzuki
,
K.
, and
Ezura
,
Y.
,
1993
, “
Insect-Like Micro Robots With External Skeletons
,”
IEEE Control Syst. Mag.
,
13
(
1
), pp.
37
41
.10.1109/37.184791
17.
Demian
,
T.
,
1970
,
Mecanisme şi elemente constructive de mecanică fină
,
Didactic and Pedagogic Publisher
,
Bucharest
.
18.
Lungu
,
R.
,
2000
,
Automatizarea aparatelor de zbor (Flight Aparatus Automation)
,
Universitaria Publisher
, Craiova, Romania.
19.
Calise
,
A. J.
,
Hovakymyan
,
N.
, and
Idan
,
M.
,
2001
, “
Adaptive Output Control of Nonlinear Systems Using Neural Networks
,”
Automatica
,
37
(
8
), pp.
1201
1211
.10.1016/S0005-1098(01)00070-X
20.
Chwa
,
D.
, and
Choi
,
J.
,
2003
, “
Adaptive Nonlinear Guidance Law Considering Control Loop Dynamics
,”
IEEE Trans. Aerosp. Electron. Syst.
,
39
(
4
), pp.
134
1143
.10.1109/TAES.2003.1261117
21.
Gregory
,
L. P.
,
1998
,
Adaptive Inverse Control of Plants With Disturbances
,
Stanford University
, Stanford, CA.
22.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
,
Springer
,
Berlin
.
23.
Lungu
,
M.
,
2008
,
Sisteme de conducere a zborului (Flight Control Systems)
,
Sitech Publisher
, Craiova, Romania.
24.
Lungu
,
R.
,
Lungu
,
M.
, and
Rotaru
,
C.
,
2011
, “
Non-Linear Adaptive System for the Control of the Helicopters Pitch's Angle
,”
Proc. Rom. Acad., Ser. A: Math., Phys., Tech. Sci., Inform. Sci.
,
12
(
2
), pp.
133
142
.
You do not currently have access to this content.