The combination of decentralized control and networked control where control loops are closed through a network is called decentralized networked control system (DNCS). This paper introduces a general framework that converts a generic decentralized control configuration of non-networked systems to the general setup of networked control systems (NCS). Two design methods from the literature of decentralized control for non-networked systems were chosen as a base for the design of a controller for the networked systems, the first being an observer-based decentralized control, while the second is the well-known Luenberger combined observer–controller. The main idea of our design is to formulate the DNCS in the general form and then map the resulting system to the general form of the NCS. First, a method for designing decentralized observer-based controller is discussed. Second, an implementation using a network is analyzed for the two designs. Third, two methods to analyze the stability of the DNCS are also introduced. Fourth, perturbation bounds for stability of the DNCS have been derived. Finally, examples and simulation results are shown and discussed.

References

1.
Sandell
,
N. R.
, Jr.
,
Variaya
,
P. C.
,
Athans
,
M.
, and
Safonov
,
M. G.
,
1978
, “
A Survey of Decentralized Control Methods for Large Scale Systems
,”
IEEE Trans. Autom. Control
,
23
(
2
), pp.
108
128
.10.1109/TAC.1978.1101704
2.
Zecevic
,
A. I.
,
Neskovic
,
G.
, and
Siljak
,
D. D.
,
2004
, “
Robust Decentralized Exciter Control With Linear Feedback
,”
IEEE Trans. Power Syst.
,
19
(
2
), pp.
1096
1103
.10.1109/TPWRS.2004.825829
3.
Swarnakar
,
A.
,
Marquez
,
H. J.
, and
Chen
,
T.
,
2007
, “
Robust Stabilization of Nonlinear Interconnected Systems With Application to an Industrial Utility Boiler
,”
Control Eng. Pract.
,
15
(
6
), pp.
639
654
.10.1016/j.conengprac.2006.11.004
4.
Bakule
,
L.
, and
De Le Sen
,
M.
,
2010
, “
Decentralized Resilient H∞ Observer-Based Control of a Class of Uncertain Interconnected Networked Systems
,”
American Control Conference
, ACC, Baltimore, MD, June 30–July 2, pp.
1338
1343
.
5.
Gong
,
Z.
,
1995
, “
Decentralized Robust Control of Uncertain Interconnected Systems With Prescribed Degree of Exponential Convergence
,”
IEEE Trans. Autom. Control
,
40
(
4
), pp.
704
707
.10.1109/9.376105
6.
Ha
,
Q.
, and
Trinh
,
H.
,
2004
, “
Observer-Based Control of Multi-Agent Systems Under Decentralized Information Structure
,”
Int. J. Syst. Sci.
,
35
(
12
), pp.
719
728
.10.1080/00207720412331322975
7.
Viswanadham
,
N.
, and
Ramakrishna
,
A.
,
1982
, “
Decentralized Estimation and Control of Interconnected Systems
,”
Large Scale Syst.
,
3
(3), pp.
255
266
.
8.
Pagilla
,
P. R.
,
King
,
E. O.
,
Drienhoefer
,
L. H.
, and
Garimella
,
S. S.
,
2000
, “
Robust Observer-Based Control of an Aluminum Strip Processing Line
,”
IEEE Trans. Ind. Appl.
,
36
(
3
), pp.
865
870
.10.1109/28.845063
9.
Kalsi
,
K.
,
Lian
,
J.
, and
Żak
,
S. H.
,
2009
, “
Reduced-Order Observer-Based Decentralized Control of Non-Linear Interconnected Systems
,”
Int. J. Control
,
82
(
6
), pp.
1157
1166
.10.1080/00207170802488132
10.
Kalsi
,
K.
,
Lian
,
J.
, and
Żak
,
S. H.
,
2008
, “
On Decentralized Control of Non-Linear Interconnected Systems
,”
Int. J. Control
,
82
(
3
), pp.
541
554
.10.1080/00207170802187247
11.
Siljak
,
D. D.
, and
Stipanovic
,
D. M.
,
2000
, “
Robust Stabilization of Nonlinear Systems: The LMI Approach
,”
Math. Prob. Eng.
,
6
(
5
), pp.
461
493
.10.1155/S1024123X00001435
12.
Wang
,
W.
, and
Zhang
,
Z.
,
2008
, “
A Survey of the Research Status of Networked Control Systems
,”
Proc. SPIE
7129
, p. 712916.10.1117/12.807388
13.
Othman
,
H. F.
,
Aji
,
Y. R.
,
Fakhreddin
,
F. T.
, and
Al-Ali
,
A. R.
,
2006
, “
Controller Area Networks: Evolution and Applications
,”
Proceedings of the 2nd International Conference on Information and Communication Technologies
, Damascus, Syria, Apr. 23–28, Vol. 2, pp.
3088
3093
.10.1109/ICTTA.2006.1684909
14.
Huo
,
Z.
,
Fang
,
H.
, and
Ma
,
C.
,
2004
, “
Networked Control System: State of the Art
,”
Proceedings of the World Congress on Intelligent Control and Automation (WCICA)
, Hangzhou, China, June 15–19, Vol. 2, pp.
1319
1322
.10.1109/WCICA.2004.1340853
15.
Rafael
,
B. A.
, and
Amir
,
G. A.
,
2008
, “
Variable Structure Decentralized Control and Estimation for Highway Traffic Systems
,”
ASME J. Dyn. Syst., Meas. Control
,
130
(
4
), p.
041002
.10.1115/1.2907389
16.
Hsiao
,
F. H.
,
Liang
,
Y. W.
, and
Xu
,
S. D.
,
2007
, “
Decentralized Stabilization of Neural Network Linearly Interconnected Systems Via T–S Fuzzy Control
,”
ASME J. Dyn. Syst., Meas. Control
,
129
(
3
), pp.
343
351
.10.1115/1.2234492
17.
Chen
,
W -H.
,
2004
, “
Disturbance Observer Based Control for Nonlinear Systems
,”
IEEE/ASME Trans. Mechatronics
,
9
(
4
), pp.
706
710
.10.1109/TMECH.2004.839034
18.
Michalska
,
H.
, and
Mayne
,
D. Q.
,
1995
, “
Moving Horizon Observers and Observer-Based Control
,”
IEEE Trans. Autom. Control
,
40
(
6
), pp.
995
1006
.10.1109/9.388677
19.
Żak
,
S. H.
,
2003
,
Systems and Control
,
Oxford University
,
New York
.
20.
Stanislaw, Z., 2012, ECE 675 Lecture Notes, Spring, Purdue University, West Lafayette, IN.
21.
Tabbara
,
M.
,
Nesić
,
D.
, and
Teel
,
A. R.
,
2007
, “
Networked Control Systems: Emulation Based Design
,”
Networked Control Systems, Series in Intelligent Control and Intelligent Automation
,
World Scientific
,
Singapore
.
22.
Zhang
,
W.
,
Branicky
,
M. S.
, and
Phillips
,
S. M.
,
2001
, “
Stability of Networked Control Systems
,”
Control Syst.
,
21
(
1
), pp.
84
99
.10.1109/37.898794
23.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
, 2nd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
24.
Walsh
,
G. C.
,
Ye
,
H.
, and
Bushnell
,
L. G.
,
2002
, “
Stability Analysis of Networked Control Systems
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
438
446
.10.1109/87.998034
25.
Khalil
,
A. F.
, and
Want
,
J.
,
2010
, “
A New Stability Analysis and Time-Delay Tolerance Estimation Approach for Output Feedback Networked Control Systems
,”
UKACC International Conference on Control
, Sept. 7–10, pp.
1
6
.10.1049/ic.2010.0337
26.
Nguyen
,
A.
,
Ha
,
Q. P.
,
Huang
,
S.
, and
Trinh
,
H.
,
2004
, “
Observer-Based Decentralized Approach to Robotic Formation Control
,”
Proceedings of the 2004 Australian Conference of Robotics and Automation
, Canberra, Australia, Dec. 6–8, pp.
1
8
.
27.
Elmahdi
,
A.
,
Taha
,
A. F.
,
Hui
,
S.
, and
Zak
,
S. H.
,
2012
, “
A Hybrid Scheduling Protocol to Improve Quality of Service in Networked Control Systems
,”
50th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
, Monticello, IL, Oct. 1–5, pp.
98
105
.10.1109/Allerton.2012.6483205
28.
Elmahdi
,
A.
,
Taha
,
A. F.
,
Sun
,
D.
, and
Panchal
,
J.
,
2014
, “
An Optimal General Purpose Scheduler for Networked Control Systems
,”
IEEE International Conference on Systems, Man, and Cybernetics
, (SMC2014), San Diego, CA, Oct. 5–8, pp. 3285–3290.
29.
Taha
,
A. F.
,
Elmahdi
,
A.
,
Panchal
,
J.
, and
Sun
,
D.
,
2014
, “
Pure Time Delay Analysis for Decentralized Networked Control Systems
,”
ASME 2014 Dynamic Systems and Control (DSC) Conference
, San Antonio, TX, Oct. 22–24.
You do not currently have access to this content.