A guidance law with finite time convergence is designed using the sliding mode control method and finite time convergence control theory, accounting for the missile autopilot as second-order dynamics. The high-order derivatives of the line of sight (LOS) angle are avoided in the expression of guidance law such that it can be implemented in practical applications. The designed guidance law is effective in compensating the bad influence of the autopilot dynamics on guidance accuracy. In simulations of intercepting a non maneuvering target or a maneuvering target, respectively, the designed guidance law is compared with the adaptive sliding mode guidance (ASMG) law in the presence of missile autopilot lag. Simulation results show that the designed guidance law is able to guide a missile to accurately intercept a nonmaneuvering target or a maneuvering target with finite time, even if it escapes in a great and fast maneuver and the autopilot has a relatively large lag.

References

1.
Zhou
,
D.
,
Mu
,
C. D.
, and
Xu
,
W. L.
,
1999
, “
Adaptive Sliding-Mode Guidance of a Homing Missile
,”
J. Guid. Control Dyn.
,
22
(
4
), pp.
589
594
.10.2514/2.4421
2.
Liaw
,
D. C.
,
Liang
,
Y. W.
, and
Cheng
,
C. C.
,
2000
, “
Nonlinear Control for Missile Terminal Guidance
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
12
), pp.
663
668
.10.1115/1.1316796
3.
Shtessel
,
Y. B.
,
Shkolnikov
,
I. A.
, and
Levant
,
A.
,
2007
, “
Smooth Second-Order Sliding Modes: Missile Guidance Application
,”
Automatica
,
43
(
8
), pp.
1470
1476
.10.1016/j.automatica.2007.01.008
4.
Chen
,
R. H.
,
Speyer
,
J. L.
, and
Lianos
,
D.
,
2010
, “
Optimal Intercept Missile Guidance Strategies With Autopilot Lag
,”
J. Guid. Control Dyn.
,
33
(
4
), pp.
1264
1272
.10.2514/1.44618
5.
Garai
,
T.
,
Mukhopadhyay
,
S.
, and
Chose
,
D.
,
2009
, “
Approximate Closed-Form Solutions of Realistic True Proportional Navigation Guidance Using the Adomian Decomposition Method
,”
Proc. Inst. Mech. Eng., Part G
,
223
(
5
), pp.
189
199
.10.1243/09544100JAERO457
6.
Rusnak
,
I.
, and
Meir
,
L.
,
1991
, “
Modern Guidance Law for High-Order Autopilot
,”
J. Guid. Control Dyn.
,
14
(
5
), pp.
1056
1058
.10.2514/3.20749
7.
Chwa
,
D. Y.
,
Choi
,
J. Y.
, and
Anavatti
,
S. G.
,
2006
, “
Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
112
123
.10.1109/TCST.2005.860529
8.
Chwa
,
D. Y.
, and
Choi
,
J. Y.
,
2003
, “
Adaptive Nonlinear Guidance Law Considering Control Loop Dynamics
,”
IEEE Trans. Aerosp. Electron. Syst.
,
39
(
4
), pp.
1134
1143
.10.1109/TAES.2003.1261117
9.
Qu
,
P. P.
, and
Zhou
,
D.
,
2011
, “
Guidance Law Incorporating Second-Order Dynamics of Missile Autopilots
,”
J. Syst. Eng. Electron.
,
33
(
10
), pp.
2263
2267
. 10.3969/j.issn.1001-506X.2011.10.24
10.
Zhou
,
D.
,
Sun
,
S.
, and
Kok
,
L. T.
,
2009
, “
Guidance Laws With Finite Time Convergence
,”
J. Guid. Control Dyn.
,
32
(
6
), pp.
1838
1846
.10.2514/1.42976
11.
Haimo
,
V. T.
,
1986
, “
Finite Time Controllers
,”
SIAM J. Control Optim.
,
24
(
4
), pp.
760
770
.10.1137/0324047
12.
Hong
,
Y. G.
,
2002
, “
Finite Time Stabilization and Stabilizability of a Class of Controllable Systems
,”
Syst. Control Lett.
,
46
(
4
), pp.
231
236
.10.1016/S0167-6911(02)00119-6
13.
Gurfil
,
P.
,
Jodorkovsky
,
M.
, and
Guelman
,
M.
,
1998
, “
Finite Time Stability Approach to Proportional Navigation Systems Analysis
,”
J. Guid. Control Dyn.
,
21
(
6
), pp.
853
861
.10.2514/2.4348
14.
Levant
,
I.
,
2001
, “
Universal Single-Input-Single-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence
,”
IEEE Trans. Autom. Control
,
46
(
9
), pp.
1447
1451
.10.1109/9.948475
15.
Hong
,
Y. G.
,
Wang
,
J. K.
, and
Chen
,
D. Z.
,
2006
, “
Adaptive Finite-Time Control of Nonlinear Systems With Parametric Uncertainty
,”
IEEE Trans. Autom. Control
,
51
(
5
), pp.
858
862
.10.1109/TAC.2006.875006
16.
Shtessel
,
Y. B.
, and
Shkolnikov
,
I. A.
,
2003
, “
Integrated Guidance and Control of Advanced Interceptors Using Second Order Sliding Modes
,”
Proceedings of the 42th IEEE Conference on Decision and Control
,
Maui, HI
, Dec. 9–12, pp.
4587
4592
.
17.
Zha
,
X.
,
Cui
,
P. Y.
, and
Chang
,
B. J.
,
2005
, “
An Integrated Approach to Guidance and Control for Aircraft Applying to Attack the Ground Fixed Targets
,”
J. Astronaut.
,
26
(
1
), pp.
13
18
.1000-1328(2005) 01-0013-06
18.
Kumar
,
S. R.
,
Rao
,
S.
, and
Ghose
,
D.
,
2012
, “
Non-Singular Terminal Sliding Mode Guidance and Control With Terminal Angle Constraints for Non-Maneuvering Targets
,”
12th IEEE Workshop on Variable Structure Systems
,
Maharashtra, Mumbai
, Jan. 12–14, pp.
291
296
.
19.
Kumar
,
S. R.
,
Rao
,
S.
, and
Ghose
,
D.
,
2012
, “
Sliding-Mode Guidance and Control for All-Aspect Interceptors With Terminal Angle Constraints
,”
J. Guid. Control Dyn.
,
35
(
4
), pp.
1230
1246
.10.2514/1.55242
20.
Zakaria
,
N.
,
Pal
,
A. J.
, and
Shah
,
S. N. M.
,
2013
, “
Stagewise Optimization of Distributed Clustered Finite Difference Time Domain (FDTD) Using Genetic Algorithm
,”
Int. J. Innovative Comput. Inf. Control
,
9
(
6
), pp.
2303
2326
.
21.
Zhao
,
J.
,
Jiang
,
B.
,
Shi
,
P.
, and
He
,
Z.
,
2014
, “
Fault Tolerant Control for Damaged Aircraft Based on Sliding Mode Control Scheme
,”
Int. J. Innovative Comput. Inf. Control
,
10
(
1
), pp.
293
302
.
22.
Chen
,
F.
,
Hou
,
R.
,
Jiang
,
B.
, and
Tao
,
G.
,
2013
, “
Study on Fast Terminal Sliding Mode Control for a Helicopter Via Quantum Information Technique and Nonlinear Fault Observer
,”
Int. J. Innovative Comput. Inf. Control
,
9
(
8
), pp.
3437
3447
.
You do not currently have access to this content.