A method is presented for tool tracking in active magnetic bearing (AMB) spindle applications. The method uses control of the AMB air gap to achieve the desired tool position. The reference tracking problem is transformed from the tool coordinates into the AMB control axes by bearing deflection optimization. Therefore, tool tracking can be achieved by an off-the-shelf AMB controller. The method is demonstrated on a high-speed AMB boring spindle with a proportional integral derivative (PID) control. The hypothetical part geometries are traced in the range of 30 μm. Static external loading is applied to the tool to confirm disturbance rejection. Finally, a numerical simulation is performed to verify the ability to control the tool during high-speed machining.

References

1.
Erdel
,
B.
,
2003
,
High-Speed Machining
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
2.
King
,
R.
,
1985
,
Handbook of High-Speed Machining Technology
,
Chapman and Hall
,
New York
.10.1007/978-1-4684-6421-4
3.
Knospe
,
C.
,
2007
, “
Active Magnetic Bearings for Machining Applications
,”
Control Eng. Pract.
,
15
(
3
), pp.
307
313
.10.1016/j.conengprac.2005.12.002
4.
Zivi
,
E.
,
Anand
,
D.
,
Kirk
,
J.
, and
Anjanappa
,
M.
,
1990
, “
Magnetic Bearing Spindle Control for Accuracy Enhancement in Machining
,”
ASME Winter Annual Meeting
,
Dallas, TX
, pp.
283
297
.
5.
Auchet
,
S.
,
Chevrier
,
P.
,
Lacour
,
M.
, and
Lipinski
,
P.
,
2004
, “
A New Method of Cutting Force Measurement Based on Command Voltage of Active Electro-Magnetic Bearings
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1441
1449
.10.1016/j.ijmachtools.2004.05.009
6.
Chen
,
M.
, and
Knospe
,
C.
,
2007
, “
Control Approaches to the Suppression of Machining Chatter Using Active Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
15
(
2
), pp.
220
232
.10.1109/TCST.2006.886419
7.
Pesch
,
A.
, and
Sawicki
,
J.
,
2012
, “
Application of Robust Control to Chatter Attenuation for a High-Speed Machining Spindle on Active Magnetic Bearings
,”
Proceedings of the 13th International Symposium on Magnetic Bearings (ISMB13)
,
Washington, DC
, pp.
1
11
.
8.
Sato
,
K.
, and
Maeda
,
G.
,
2009
, “
A Practical Control Method for Precision Motion—Improvement of NCTF Control Method for Continuous Motion Control
,”
Precis. Eng.
,
33
(
2
), pp.
175
186
.10.1016/j.precisioneng.2008.05.006
9.
Rasmussen
,
J.
,
Tsao
,
T.
,
Hanson
,
R.
, and
Kapoor
,
S.
,
1994
, “
Dynamic Variable Depth of Cut Machining Using Piezoelectric Actuators
,”
Int. J. Mach. Tools Manuf.
,
34
(
3
), pp.
379
392
.10.1016/0890-6955(94)90007-8
10.
Woronko
,
A.
,
Huang
,
J.
, and
Altintas
,
Y.
,
2003
, “
Piezoelectric Tool Actuator for Precision Machining on Conventional CNC Turning Centers
,”
Precis. Eng.
,
27
(
4
), pp.
335
345
.10.1016/S0141-6359(03)00040-0
11.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2009
, “
A Flexure-Based Mechanism and Control Methodology for Ultra-Precision Turning Operation
,”
Precis. Eng.
,
33
(
2
), pp.
160
166
.10.1016/j.precisioneng.2008.05.001
12.
Sawicki
,
J.
,
Maslen
,
E.
, and
Bischof
,
K.
,
2007
, “
Modeling and Performance Evaluation of Machining Spindle With Active Magnetic Bearings
,”
J. Mech. Sci. Technol.
,
21
(
6
), pp.
847
850
.10.1007/BF03027055
13.
Wroblewski
,
A.
,
Sawicki
,
J.
, and
Pesch
,
A.
,
2012
, “
Rotor Model Updating and Validation for an Active Magnetic Bearing Based High-Speed Machining Spindle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122509
.10.1115/1.4007337
14.
Fittro
,
R.
,
Knospe
,
C.
, and
Stephens
,
L.
,
2003
, “
Mu Synthesis Applied to the Compliance Minimization of an Active Magnetic Bearing HSM Spindle's Thrust Axis
,”
Mach. Sci. Technol.
,
7
(
1
), pp.
19
51
.10.1081/MST-120018954
15.
Schweitzer
,
G.
, and
Maslen
,
E.
,
2009
,
Magnetic Bearings
,
Springer
,
Berlin, Heidelberg, Germany
.
16.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.