The attitude dynamics model for a spacecraft with a variable speed control moment gyroscope (VSCMG) is derived using the principles of variational mechanics. The resulting dynamics model is obtained in the framework of geometric mechanics, relaxing some of the assumptions made in prior literature on control moment gyroscopes (CMGs). These assumptions include symmetry of the rotor and gimbal structure, and no offset between the centers of mass of the gimbal and the rotor. The dynamics equations show the complex nonlinear coupling between the internal degrees-of-freedom associated with the VSCMG and the spacecraft base body's rotational degrees-of-freedom. This dynamics model is then further generalized to include the effects of multiple VSCMGs placed in the spacecraft base body, and sufficient conditions for nonsingular VSCMG configurations are obtained. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of VSCMGs are provided. A control scheme using a finite number of VSCMGs for attitude stabilization maneuvers in the absence of external torques and when the total angular momentum of the spacecraft is zero is presented. The dynamics model of the spacecraft with a finite number of VSCMGs is then simplified under the assumptions that there is no offset between the centers of mass of the rotor and gimbal, and the rotor is axisymmetric. As an example, the case of three VSCMGs with axisymmetric rotors, placed in a tetrahedron configuration inside the spacecraft, is considered. The control scheme is then numerically implemented using a geometric variational integrator (GVI). Numerical simulation results with zero and nonzero rotor offset between centers of mass of gimbal and rotor are presented.

References

1.
Lappas
,
V.
,
Steyn
,
W.
, and
Underwood
,
C.
,
2002
, “
Torque Amplification of Control Moment Gyros
,”
Electron. Lett.
,
38
(
15
), pp.
837
839
.10.1049/el:20020590
2.
Defendini
,
A.
,
Faucheux
,
P.
,
Guay
,
P.
,
Bangert
,
K.
,
Heimel
,
H.
,
Privat
,
M.
, and
Seiler
,
R.
,
2003
, “
Control Moment GYRO CMG 15-45 S: A Compact CMG Product for Agile Satellites in the One Ton Class
,”
Proceedings of the 10th European Space Mechanisms and Tribology Symposium
,
R. A.
Harris
, ed.,
ESA Special Publication
, Vol.
524
, pp.
27
31
.
3.
Wie
,
B.
,
2008
,
Space Vehicle Dynamics and Control
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
4.
Schaub
,
H.
, and
Junkins
,
J. L.
,
2009
,
Analytical Mechanics of Space Systems
, 2nd ed.,
AIAA Education Series
,
Reston, VA
.10.2514/4.861550
5.
McMahon
,
J.
, and
Schaub
,
H.
,
2009
, “
Simplified Singularity Avoidance Using Variable Speed Control Moment Gyroscope Nullmotion
,”
AIAA J.
,
32
(
6
), pp.
1938
1943
.
6.
Yoon
,
H.
, and
Tsiotras
,
P.
,
2002
, “
Spacecraft Adaptive Attitude and Power Tracking With Variable Speed Control Moment Gyroscopes
,”
AIAA J.
,
25
(
6
), pp.
1081
1090
.10.2514/2.4987
7.
Margulies
,
G.
, and
Aubrun
,
J. N.
,
1978
, “
Geometric Theory of Single-Gimbal Control Moment Gyro Systems
,”
J. Astronaut. Sci.
,
26
(
2
), pp.
159
191
.
8.
Kurokawa
,
H.
,
1998
, “
A Geometric Study of Single Gimbal Control Moment Gyros (Singularity Problems and Steering Law)
,” Agency of Industrial Technology and Science, Japan, Technical Report No. 175.
9.
Paradiso
,
J.
,
1991
, “
A Search-Based Approach to Steering Single Gimbaled CMGs
,” Draper Laboratory, Cambridge, MA, Technical Report No. CSDL-R-2261.
10.
Schiehlen
,
W.
,
1972
, “
Two Different Approaches for a Control Law of Single Gimbal Control Moment Gyros
,” NASA-Marshall Space Flight Center, AL, Technical Report No. NASA-TM-X-64693.
11.
Leve
,
F.
, and
Fitz-Coy
,
N.
,
2010
, “
Hybrid Steering Logic for Single-Gimbal Control Moment Gyroscopes
,”
AIAA J.
,
33
(
4
), pp.
1202
1212
.10.2514/1.46853
12.
Nebylov
,
A.
,
2004
,
Automatic Control in Aerospace
, 1st ed.,
Elsevier
,
Oxford, UK
.
13.
Hughes
,
P.
,
1986
,
Spacecraft Attitude Dynamics
,
Wiley
,
Hoboken, NJ
.
14.
Tokar
,
E.
, and
Platonov
,
V.
,
1979
, “
Singular Surfaces in Unsupported Gyrodyne Systems
,”
Cosmic Res.
,
16
, pp.
547
555
.
15.
Sun
,
Z.
,
Zhang
,
L.
,
Jin
,
G.
, and
Yang
,
X.
,
2010
, “
Analysis of Inertia Dyadic Uncertainty for Small Agile Satellite With Control Moment Gyros
,”
International Conference on Mechatronics and Automation
, Xi'an, China, Aug. 4–7, pp.
813
818
.10.1109/ICMA.2010.5589033
16.
Marsden
,
J. E.
, and
Ratiu
,
T. S.
,
1999
,
Introduction to Mechanics and Symmetry
, 2nd ed.,
Springer Verlag
, New York.10.1007/978-1-4612-2682-6
17.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
(Interdisciplinary Texts in Mathematics), Vol.
24
,
Springer Verlag
,
Heidelberg, Germany
.10.1007/b97376
18.
Marsden
,
J. E.
,
1992
,
Lectures on Mechanics
,
Cambridge University Press
, New York.10.1017/CBO9780511624001
19.
Bloch
,
A. M.
,
Krishnaprasad
,
P. S.
,
Marsden
,
J. E.
, and
de Alvarez
,
G. S.
,
1992
, “
Stabilization of Rigid Body Dynamics by Internal and External Torques
,”
Automatica
,
28
(
4
), pp.
745
756
.10.1016/0005-1098(92)90034-D
20.
Wang
,
L.-S.
, and
Krishnaprasad
,
P. S.
,
1992
, “
Gyroscopic Control and Stabilization
,”
J. Nonlinear Sci.
,
2
(
4
), pp.
367
415
.10.1007/BF01209527
21.
Bullo
,
F.
, and
Lewis
,
A. D.
,
2004
,
Geometric Control of Mechanical Systems (Texts in Applied Mathematics)
, Vol.
49
,
Springer Verlag
,
Heidelberg, Germany
.10.1007/978-1-4899-7276-7
22.
Bredon
,
G. E.
,
1993
,
Topology and Geometry
(Graduate Texts in Mathematics) Vol.
139
,
Springer Verlag
,
Heidelberg, Germany
.10.1007/978-1-4757-6848-0
23.
Sanyal
,
A.
,
Prabhakaran
,
V.
,
Leve
,
F.
, and
McClamroch
,
N.
,
2013
, “
Geometric Approach to Attitude Dynamics and Control of Spacecraft With Variable Speed Control Moment Gyroscopes
,”
IEEE
International Conference on Control Applications (CCA)
, Hyderabad, Aug. 28–30, pp.
556
561
.10.1109/CCA.2013.6662808
24.
Viswanathan
,
S. P.
,
Sanyal
,
A.
,
Leve
,
F.
, and
McClamroch
,
H. N.
,
2013
, “
Geometric Mechanics Based Modeling of the Attitude Dynamics and Control of Spacecraft With Variable Speed Control Moment Gyroscopes
,”
ASME
Paper No. DSCC2013-4033.10.1115/DSCC2013-4033
25.
Chaturvedi
,
N. A.
,
Sanyal
,
A. K.
, and
McClamroch
,
N. H.
,
2011
, “
Rigid-Body Attitude Control Using Rotation Matrices for Continuous, Singularity-Free Control Laws
,”
IEEE Control Syst. Mag.
,
31
(
3
), pp.
30
51
.10.1109/MCS.2011.940459
26.
Virgala
,
I.
, and
Peter Frankovsky
,
M. K.
,
2013
, “
Friction Effect Analysis of a DC Motor
,”
Am. J. Mech. Eng.
,
1
(
1
), pp.
1
5
.10.12691/ajme-1-1-1
27.
Yoon
,
H.
, and
Tsiotras
,
P.
,
2004
, “
Singularity Analysis of Variable Speed Control Moment Gyros
,”
AIAA J.
,
27
(
3
), pp.
374
386
.10.2514/1.2946
28.
Marsden
,
J.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
, pp.
357
514
.10.1017/S096249290100006X
29.
Lee
,
T.
,
McClamroch
,
N.
, and
Leok
,
M.
,
2005
, “
A Lie Group Variational Integrator for the Attitude Dynamics of a Rigid Body With Applications to the 3D Pendulum
,”
IEEE on Conference Control Applications (CCA)
, pp.
962
967
.
30.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2000
,
Geometric Numerical Integration
,
Springer Verlag
,
Heidelberg, Germany
.10.1007/978-3-662-05018-7
31.
Iserles
,
A.
,
Munthe-Kaas
,
H. Z.
,
Nörsett
,
S. P.
, and
Zanna
,
A.
,
2000
, “
Lie-Group Methods
,”
Acta Numer.
,
9
, pp.
215
365
.10.1017/S0962492900002154
32.
Hussein
,
I.
,
Leok
,
M.
,
Sanyal
,
A.
, and
Bloch
,
A.
,
2006
, “
A Discrete Variational Integrator for Optimal Control Problems on SO(3)
,” 45th
IEEE
Conference on Decision and Control
, San Diego, CA, Dec. 13–15, pp.
6636
6641
.10.1109/CDC.2006.377818
33.
Sanyal
,
A. K.
,
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2008
, “
Global Optimal Attitude Estimation Using Uncertainty Ellipsoids
,”
Syst. Control Lett.
,
57
(
3
), pp.
236
245
.10.1016/j.sysconle.2007.08.014
34.
Bloch
,
A.
,
Hussein
,
I.
,
Leok
,
M.
, and
Sanyal
,
A.
,
2009
, “
Geometric Structure-Preserving Optimal Control of a Rigid Body
,”
J. Dyn. Control Syst.
,
15
(
3
), pp.
307
330
.10.1007/s10883-009-9071-2
35.
Davis
,
P. J.
, and
Rabinowitz
,
P.
,
1975
, “
Methods of Numerical Integration
,”
Computer Science and Applied Mathematics
, 1st ed.,
Academic Press
,
New York
.
You do not currently have access to this content.