With the development of wind turbine technology, more wind turbines operate in the partial load region, where one of the main objectives is to maximize captured wind energy. This paper presents the development of an optimal control framework to maximize wind energy capture for wind turbines with limited rotor speed ranges. Numerical optimal control (NOC) techniques were applied to search for the achievable maximum power coefficient, thus maximum wind energy capture. Augmentations of these optimal techniques significantly reduced the computational cost. Simulation results show that, in comparison with the traditional torque feedback and conventional optimal control algorithms, the proposed augmented optimal control algorithm increases the harvested energy while minimizing the computational expense for speed-constrained wind turbines during partial load operation.

References

1.
Blanco
,
M. I.
,
2009
, “
The Economics of Wind Energy
,”
Renewable Sustainable Energy Rev.
,
13
(
6
), pp.
1372
1382
.
2.
Pao
,
L. Y.
, and
Johnson
,
K. E.
,
2011
, “
Control of Wind Turbines
,”
IEEE Control Syst. Mag.
,
31
(
2
), pp.
44
62
.
3.
Pao
,
L. Y.
, and
Johnson
,
K. E.
,
2009
, “
A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms
,”
American Control Conference
, pp.
2076
2089
.
4.
Laks
,
J. H.
,
Pao
,
L. Y.
, and
Wright
,
A. D.
,
2009
, “
Control of Wind Turbines: Past, Present, and Future
,”
American Control Conference
, pp.
2096
2103
.
5.
Johnson
,
K. E.
,
Fingersh
,
L. J.
,
Balas
,
M. J.
, and
Pao
,
L. Y.
,
2004
, “
Methods for Increasing Region 2 Power Capture on a Variable-Speed Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
126
(
4
), pp.
1092
1100
.
6.
Zou
,
Y.
,
Elbuluk
,
M. E.
, and
Sozer
,
Y.
,
2013
, “
Stability Analysis of Maximum Power Point Tracking (MPPT) Method in Wind Power Systems
,”
IEEE Trans. Ind. Appl.
,
49
(
3
), pp.
1129
1136
.
7.
Abdeddaim
,
S.
, and
Betka
,
A.
,
2013
, “
Optimal Tracking and Robust Power Control of the DFIG Wind Turbine
,”
Int. J. Electr. Power Energy Syst.
,
49
, pp.
234
242
.
8.
Dang
,
D. Q.
,
Wang
,
Y.
, and
Cai
,
W.
,
2009
, “
A Multi-Objective Optimal Nonlinear Control of Variable Speed Wind Turbine
,”
IEEE International Conference on Control and Automation
, pp.
17
22
.
9.
Akermann
,
T.
,
2005
,
Wind Power in Power Systems
,
Wiley
,
Hoboken, NJ
.
10.
Carlin
,
P. W.
,
Laxson
,
A. S.
, and
Muljadi
,
E. B.
,
2003
, “
The History and State of the Art of Variable-Speed Wind Turbine Technology
,”
Wind Energy
,
6
(
2
), pp.
129
159
.
11.
Hall
,
J. F.
, and
Chen
,
D.
,
2012
, “
Performance of a 100 kW Wind Turbine With a Variable Ratio Gearbox
,”
Renewable Energy
,
44
, pp.
261
266
.
12.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation-Part 1: System Model and Control Framework
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
1
), p.
11016
.
13.
Shaltout
,
M. L.
,
Hall
,
J. F.
, and
Chen
,
D.
,
2014
, “
Optimal Control of a Wind Turbine With a Variable Ratio Gearbox for Maximum Energy Capture and Prolonged Gear Life
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
31007
.
14.
Schlipf
,
D.
,
Schlipf
,
D. J.
, and
Kuhn
,
M.
,
2013
, “
Nonlinear Model Predictive Control of Wind Turbines Using LIDAR
,”
Wind Energy
,
16
(
7
), pp.
1107
1129
.
15.
Schlipf
,
D.
, and
Cheng
,
P. W.
,
2013
, “
Adaptive Feed Forward Control for Wind Turbines
,”
At-Automatisierungstechnik
,
61
(
5
), pp.
329
338
.
16.
Johnson
,
K. E.
,
Pao
,
L. Y.
,
Balas
,
M. J.
, and
Fingersh
,
L. J.
,
2006
, “
Control of Variable-Speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture
,”
IEEE Control Syst.
,
26
(
3
), pp.
70
81
.
17.
Song
,
Y. D.
,
Dhinakaran
,
B.
, and
Bao
,
X. Y.
,
2000
, “
Variable Speed Control of Wind Turbines Using Nonlinear and Adaptive Algorithms
,”
J. Wind Eng. Ind. Aerodyn.
,
85
(
3
), pp.
293
308
.
18.
Frost
,
S. A.
,
Balas
,
M. J.
, and
Wright
,
A. D.
,
2009
, “
Direct Adaptive Control of a Utility-Scale Wind Turbine for Speed Regulation
,”
Int. J. Robust Nonlinear Control
,
19
(
1
), pp.
59
71
.
19.
Koutroulis
,
E.
, and
Kalaitzakis
,
K.
,
2006
, “
Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications
,”
IEEE Trans. Ind. Electron.
,
53
(
2
), pp.
486
494
.
20.
Wang
,
Q. C.
, and
Chang
,
L. C.
,
2004
, “
An Intelligent Maximum Power Extraction Algorithm for Inverter-Based Variable Speed Wind Turbine Systems
,”
IEEE Trans. Power Electron.
,
19
(
5
), pp.
1242
1249
.
21.
Barakati
,
S. M.
,
Kazerani
,
M.
, and
Aplevich
,
J. D.
,
2009
, “
Maximum Power Tracking Control for a Wind Turbine System Including a Matrix Converter
,”
IEEE Trans. Energy Convers.
,
24
(
3
), pp.
705
713
.
22.
Dalala
,
Z. M.
,
Zahid
,
Z. U.
,
Yu
,
W.
,
Cho
,
Y.
, and
Lai
,
J.
,
2013
, “
Design and Analysis of an MPPT Technique for Small-Scale Wind Energy Conversion Systems
,”
IEEE Trans. Energy Convers.
,
28
(
3
), pp.
756
767
.
23.
Liu
,
J.
, and
Peng
,
H.
,
2008
, “
Modeling and Control of a Power-Split Hybrid Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1242
1251
.
24.
Stryk
,
O.
, and
Bulirsch
,
R.
,
1992
, “
Direct and Indirect Methods for Trajectory Optimization
,”
Ann. Oper. Res.
,
37
(
1
), pp.
357
373
.
25.
Hull
,
D. G.
,
2003
,
Optimal Control Theory for Applications
,
Springer
,
Heidelberg, Germany
.
26.
Sargent
,
R. W. H.
,
2000
, “
Optimal Control
,”
J. Comput. Appl. Math.
,
124
(
1
), pp.
361
371
.
27.
Hull
,
D. G.
,
1997
, “
Conversion of Optimal Control Problems Into Parameter Optimization Problems
,”
J. Guid. Control Dyn.
,
20
(
1
), pp.
57
60
.
28.
Gornov
,
A. Y.
,
Tyatyushkin
,
A. I.
, and
Finkelstein
,
E. A.
,
2013
, “
Numerical Methods for Solving Applied Optimal Control Problems
,”
Comput. Math. Math. Phys.
,
53
(
12
), pp.
1825
1838
.
29.
Noton
,
A.
,
Dyer
,
P.
, and
Markland
,
C.
,
1967
, “
Numerical Computation of Optimal Control
,”
IEEE Trans. Autom. Control
,
12
(
1
), pp.
59
66
.
30.
Heier
,
S.
,
2006
,
Grid Integration of Wind Energy Conversion Systems
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
31.
Hall
,
J. F.
,
Mecklenborg
,
C. A.
,
Chen
,
D.
, and
Pratap
,
S. B.
,
2011
, “
Wind Energy Conversion With a Variable-Ratio Gearbox: Design and Analysis
,”
Renewable Energy
,
36
(
3
), pp.
1075
1080
.
32.
Hager
,
W. W.
,
1999
, “
Stabilized Sequential Quadratic Programming
,”
Comput. Optim. Appl.
,
12
(
1
), pp.
253
273
.
33.
Frank
,
E. C.
, and
Michael
,
L. O.
,
2012
, “
A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization
,”
SIAM J. Optim.
,
22
(
2
), pp.
474
500
.
34.
Wang
,
F.
,
Zhang
,
H.
, and
Liu
,
D.
,
2009
, “
Adaptive Dynamic Programming: An Introduction
,”
IEEE Comput. Intell. Mag.
,
4
(
2
), pp.
39
47
.
35.
Iyengar
,
G. N.
,
2005
, “
Robust Dynamic Programming
,”
Math. Oper. Res.
,
30
(
2
), pp.
257
280
.
36.
Lexa
,
M. A.
,
Davies
,
M. E.
,
Thompson
,
J. S.
, and
Nikolic
,
J.
,
2011
, “
Compressive Power Spectral Density Estimation
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp.
3884
3887
.
37.
Lee
,
D.
, and
Baldick
,
R.
,
2013
, “
Future Wind Power Scenario Synthesis Through Power Spectral Density Analysis
,”
IEEE Trans. Smart Grid
,
5
(
1
), pp.
490
500
.
38.
Lange
,
M.
,
2005
, “
On the Uncertainty of Wind Power Predictions—Analysis of the Forecast Accuracy and Statistical Distribution of Errors
,”
ASME J. Sol. Energy Eng.
,
127
(
2
), pp.
177
184
.
You do not currently have access to this content.