A robust fuzzy sliding mode controller is presented for a multiple-input–multiple-output (MIMO) Dutch-Roll system with nonaffine inputs and external disturbances. An integrating factor with a nonlinear saturation function is introduced to construct a nonlinear integral sliding mode (NISM) surface to provide better transient response than traditional sliding mode control. Fuzzy logic systems are employed to approximate the unknown nonaffine part of the system directly. Based on Lyapunov method, the tracking errors are guaranteed to be asymptotically stable with the additional adaptive compensation terms. To verify the feasibility and effectiveness of the proposed controller, the Dutch-Roll system is presented for simulation.
Issue Section:
Research Papers
References
1.
Berry
, D. T.
, and Gilyard
, G. B.
, 1974
, “Some Stability and Control Aspects of Airframe/Propulsion System Interactions on the YF-12 Airplane
,” ASME J. Eng. Ind.
, 96
(3
), pp. 820
–826
.2.
Petersen
, F. S.
, Rediess
, H. A.
, and Weil
, J.
, 1962
, “Lateral Directional Control of the X-15 Airplane
,” NASA Flight Research Center, Edwards, CA, Technical Report No. NASA-TM-X-726
https://ntrs.nasa.gov/search.jsp?R=19650014323.3.
Szalai
, K. J.
, 1967
, “The Influence of Response Feedback Loops on the Lateral-Directional Dynamics of a Variable-Stability Transport Aircraft
,” NASA Flight Research Center, Edwards, CA, Technical Report No. NASA-TN-D-3966
.https://ntrs.nasa.gov/search.jsp?R=19670017216&hterms=Influence+Response+Feedback+Loops+Lateral&qs=N%3D0%26Ntk%3DAll%26Ntt%3DThe%2520Influence%2520of%2520Response%2520Feedback%2520Loops%2520on%2520the%2520Lateral%26Ntx%3Dmode%2520matchallpartial4.
Lawrence
, W. T.
, Jr., 1961
, “Analysis of a Pilot Airplane Lateral Instability Experienced With the X-15 Airplane
,” NASA Dryden Flight Research Center, Edwards, CA, Technical Report No. NASA-TN-D-1059
.https://ntrs.nasa.gov/search.jsp?R=19980227835&hterms=Analysis+Pilot-Airplane+Lateral+Instability&qs=N%3D0%26Ntk%3DAll%26Ntt%3DAnalysis%2520of%2520a%2520Pilot-Airplane%2520Lateral%2520Instability%26Ntx%3Dmode%2520matchallpartial5.
Philips
, W. F.
, 2000
, “An Accurate Closed Form Approximation for Dutch Roll
,” AIAA
Paper No. 2000-0409.6.
Perera
, A. L. N. A.
, 2015
, “Estimation of Characteristics of Dutch Roll for Model Aircraft at the Conceptual Design Phase
,” Fifth International Research Symposium on Engineering Advancements
(RSEA
), Malabe, Sri Lanka, Apr. 25, pp. 151
–158
.http://www.saitm.edu.lk/fac_of_eng/RSEA/SAITM_RSEA_2015/imagenesweb/Theme_3/33.pdf7.
Day
, R. E.
, 1997
, “Coupling Dynamics in Aircraft: A Historical Perspective
,” NASA Dryden Flight Research Center, Edwards, CA Technical Report No. NASA-SP-532
.https://ntrs.nasa.gov/search.jsp?R=19970019603&hterms=Coupling+Dynamics+Aircraft+Historical+Perspective&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchallany%26Ntt%3DCoupling%2BDynamics%2Bin%2BAircraft%253A%2BA%2BHistorical%2BPerspective8.
Ananthkrishnan
, N.
, and Unnikrishnan
, S.
, 2001
, “Literal Approximations to Aircraft Dynamic Modes
,” J. Guid. Control Dyn.
, 24
(6
), pp. 1196
–1203
.9.
Wen
, X.
, Sun
, C. Z.
, and Yin
, L. L.
, 2014
, “Application of Sideslip Angle Change Rate Feedback in Hypersonic Vehicle
,” Ordnance Ind. Autom.
, 33
(3
), pp. 72
–76
.10.
Singh
, S.
, and Murthy
, T. V. R.
, 2013
, “Design of an Optimal yaw Damper for 747 Jet Aircraft Model
,” Emerging Res. Electron. Comput. Sci. Technol.
, 248
(1
), pp. 801
–810
.11.
Dobrescu
, B.
, 2010
, “Damping of Oscillations in Dutch Roll Mode
,” Annals of DAAAM for 2010 and Proceedings of the 21st International DAAAM Symposium
, Zadar, Croatia, Oct. 20–23, pp. 1217
–1218
.http://www.freepatentsonline.com/article/Annals-DAAAM-Proceedings/246014174.html12.
Wolowicz
, C. H.
, Strutz
, L. W.
, Gilyard
, G. B.
, and Matbeny
, N. W.
, 1968
, “Preliminary Flight Evaluation of the Stability and Control Derivatives and Dynamic Characteristics of the Unaugmented XB-70-1 Airplane Including Comparisons With Predictions
,” NASA Flight Research Center; Edwards, CA, Technical Report No. NASA-TN-D-4578
https://ntrs.nasa.gov/search.jsp?R=19680015026&hterms=Preliminary+Flight+Evaluation+Stability+Control+Derivatives&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchallany%26Ntt%3DPreliminary%2BFlight%2BEvaluation%2Bof%2Bthe%2BStability%2Band%2BControl%2BDerivatives%2Band.13.
Chand
, S.
, and Chiu
, S.
, 1991
, “Robustness Analysis of Fuzzy Control Systems With Application to Aircraft Roll Control
,” AIAA
Paper No. 91-2799-CP.14.
Stengel
, R. F.
, 1993
, “Toward Intelligent Flight Control
,” IEEE Trans. Syst. Man Cybern.
, 23
(6
), pp. 1699
–1717
.15.
Choi
, Y. H.
, and Yoo
, S. J.
, 2016
, “A Simple Fuzzy-Approximation-Based Adaptive Control of Uncertain Unmanned Helicopters
,” Int. J. Control Autom. Syst.
, 14
(1
), pp. 340
–349
.16.
Liu
, Z.
, and Wang
, Y.
, 2014
, “Fuzzy Adaptive Tracking Control Within the Full Envelope for an Unmanned Aerial Vehicle
,” Chin. J. Aeronaut.
, 27
(5
), pp. 1273
–1287
.17.
Yang
, F.
, Yuan
, R. Y.
, Yi
, J. Q.
, Fan
, G. L.
, and Tan
, X. M.
, 2013
, “Direct Adaptive Type-2 Fuzzy Neural Network Control for a Generic Hypersonic Flight Vehicle
,” Soft Comput.
, 17
(11
), pp. 2053
–2064
.18.
Xu
, B.
, Shi
, Z.
, Yang
, C.
, and Sun
, F.
, 2014
, “Composite Neural Dynamic Surface Control of a Class of Uncertain Nonlinear Systems in Strict-Feedback Form
,” IEEE Trans. Cybern.
, 44
(12
), pp. 2026
–2634
.19.
Chen
, M.
, and Ge
, S. S.
, 2015
, “Adaptive Neural Output Feedback Control of Uncertain Nonlinear Systems With Unknown Hysteresis Using Disturbance Observer
,” IEEE Trans. Ind. Electron.
, 62
(12
), pp. 7706
–7716
.20.
Xu
, B.
, Yang
, C.
, and Pan
, Y.
, 2015
, “Global Neural Dynamic Surface Tracking Control of Strict-Feedback Systems With Application to Hypersonic Flight Vehicle
,” IEEE Trans. Neural Networks Learn. Syst.
, 26
(10
), pp. 2563
–2575
.21.
Chen
, M.
, Shi
, P.
, and Lim
, C. C.
, 2016
, “Adaptive Neural Fault-Tolerant Control of a 3-DOF Model Helicopter System
,” IEEE Trans. Syst. Man Cybern. Syst.
, 46
(2
), pp. 260
–270
.22.
Hu
, X. X.
, Wu
, L.
, Hu
, C. H.
, and Gao
, H.
, 2013
, “Adaptive Fuzzy Integral Sliding Mode Control for Flexible Air-Breathing Hypersonic Vehicles Subject to Input Nonlinearity
,” J. Aerosp. Eng.
, 26
(4
), pp. 721
–734
.23.
Jiao
, X.
, Fidan
, B.
, Jiang
, J.
, and Kamel
, M.
, 2015
, “Adaptive Mode Switching of Hypersonic Morphing Aircraft Based on Type-2 TSK Fuzzy Sliding Mode Control
,” Sci. China Inf. Sci.
, 58
(7
), pp. 1
–15
.24.
Chern
, T. L.
, and Wu
, Y. C.
, 1991
, “Design of Integral Variable Structure Controller and Application to Electrohydraulic Velocity Servosystems
,” IEEE Proc. D Control Theory Appl.
, 138
(5
), pp. 439
–444
.25.
Seshagiri
, S.
, and Khalil
, H. K.
, 2005
, “Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators
,” Automatica
, 41
(1
), pp. 43
–54
.26.
Li
, P.
, and Zheng
, Z. Q.
, 2011
, “Sliding Mode Control Approach With Nonlinear Integrator
,” Control Theory Appl.
, 28
(3
), pp. 422
–426
.27.
Tombula
, G.
, and Banksa
, S.
, 2009
, “Sliding Mode Control for a Class of Non-Affine Nonlinear Systems
,” Nonlinear Anal. Theory Methods Appl.
, 71
(12
), pp. e1589
–e1597
.28.
Xu
, B.
, Sun
, F.
, Pan
, Y.
, and Chen
, B.
, 2016
, “Disturbance Observer Based Composite Learning Fuzzy Control of Nonlinear Systems With Unknown Dead Zone
,” IEEE Trans. Syst. Man Cybern. Syst.
, PP
(99), pp. 1
–9
.29.
Gutierrez
, H. M.
, and Ro
, P. I.
, 2005
, “Magnetic Servo Levitation by Sliding-Mode Control of Nonaffine Systems With Algebraic Input Invertibility
,” IEEE Trans. Ind. Electron.
, 52
(5
), pp. 1449
–1455
.30.
Karimi
, B.
, Zeinaly
, E.
, Shahgholian
, G.
, and Bahreini
, S. M. A.
, 2014
, “Nonaffine-Nonlinear Adaptive Control of an Aircraft Cabin Pressure System Using Neural Networks
,” J. Aerosp. Eng.
, 27
(3
), pp. 597
–603
.31.
BošKović
, J. D.
, Chen
, L. J.
, and Mehra
, R. K.
, 2001
, “Multivariable Adaptive Controller Design for a Class of Non-Affine Models Arising in Flight Control
,” 40th IEEE Conference on Decision and Control
(CDC
), Orlando, FL, Dec. 4–7, pp. 2442
–2477
.32.
BošKović
, J. D.
, Chen
, L. J.
, and Mehra
, R. K.
, 2004
, “Adaptive Control Design for Nonaffine Models Arising in Flight Control
,” J. Guid. Control Dyn.
, 27
(2
), pp. 209
–217
.33.
Young
, A.
, Cao
, C.
, Patel
, V.
, and Hovakimyan
, N.
, 2007
, “Adaptive Control Design Methodology for Nonlinear-in-Control Systems in Aircraft Applications
,” J. Guid. Control Dyn.
, 30
(6
), pp. 1770
–1782
.34.
Vo
, H.
, and Seshagiri
, S.
, 2008
, “Robust Control of F-16 Lateral Dynamics
,” IECON 2008
: 34th Annual Conference of IEEE Industrial Electronics
Orlando, FL, Nov. 10–13, pp. 343
–348
.35.
Wen
, J.
, and Jiang
, C. S.
, 2011
, “Adaptive Fuzzy Control for a Class of Chaotic Systems With Non-Affine Inputs
,” Commun. Nonlinear Sci. Numer. Simul.
, 16
(1
), pp. 475
–492
.36.
Polycarpou
, M. M.
, and Ioannou
, P. A.
, 1993
, “A Robust Adaptive Nonlinear Control Design
,” Commun. Nonlinear Sci. Numer. Simul.
, 32
(3
), pp. 1365
–1369
.37.
Tao
, G.
, 1997
, “A Simple Alternative to the Barbalat Lemma
,” IEEE Trans. Autom. Control
, 42
(5
), pp. 698
–698
.38.
Ge
, S. S.
, and Zhang
, J.
, 2003
, “Neural-Network Control of Nonaffine Nonlinear System With Zero Dynamics by State and Output Feedback
,” IEEE Trans. Neural Networks
, 14
(4
), pp. 900
–918
.39.
Krstic
, M.
, and Kokotovic
, P. V.
, 1995
, “Adaptive Nonlinear Design With Controller-Identifier Separation and Swapping
,” IEEE Trans. Autom. Control
, 40
(3
), pp. 426
–440
.Copyright © 2017 by ASME
You do not currently have access to this content.