A robust fuzzy sliding mode controller is presented for a multiple-input–multiple-output (MIMO) Dutch-Roll system with nonaffine inputs and external disturbances. An integrating factor with a nonlinear saturation function is introduced to construct a nonlinear integral sliding mode (NISM) surface to provide better transient response than traditional sliding mode control. Fuzzy logic systems are employed to approximate the unknown nonaffine part of the system directly. Based on Lyapunov method, the tracking errors are guaranteed to be asymptotically stable with the additional adaptive compensation terms. To verify the feasibility and effectiveness of the proposed controller, the Dutch-Roll system is presented for simulation.

References

1.
Berry
,
D. T.
, and
Gilyard
,
G. B.
,
1974
, “
Some Stability and Control Aspects of Airframe/Propulsion System Interactions on the YF-12 Airplane
,”
ASME J. Eng. Ind.
,
96
(
3
), pp.
820
826
.
2.
Petersen
,
F. S.
,
Rediess
,
H. A.
, and
Weil
,
J.
,
1962
, “
Lateral Directional Control of the X-15 Airplane
,” NASA Flight Research Center, Edwards, CA, Technical Report No.
NASA-TM-X-726
https://ntrs.nasa.gov/search.jsp?R=19650014323.
3.
Szalai
,
K. J.
,
1967
, “
The Influence of Response Feedback Loops on the Lateral-Directional Dynamics of a Variable-Stability Transport Aircraft
,” NASA Flight Research Center, Edwards, CA, Technical Report No.
NASA-TN-D-3966
.https://ntrs.nasa.gov/search.jsp?R=19670017216&hterms=Influence+Response+Feedback+Loops+Lateral&qs=N%3D0%26Ntk%3DAll%26Ntt%3DThe%2520Influence%2520of%2520Response%2520Feedback%2520Loops%2520on%2520the%2520Lateral%26Ntx%3Dmode%2520matchallpartial
4.
Lawrence
,
W. T.
, Jr.
,
1961
, “
Analysis of a Pilot Airplane Lateral Instability Experienced With the X-15 Airplane
,” NASA Dryden Flight Research Center, Edwards, CA, Technical Report No.
NASA-TN-D-1059
.https://ntrs.nasa.gov/search.jsp?R=19980227835&hterms=Analysis+Pilot-Airplane+Lateral+Instability&qs=N%3D0%26Ntk%3DAll%26Ntt%3DAnalysis%2520of%2520a%2520Pilot-Airplane%2520Lateral%2520Instability%26Ntx%3Dmode%2520matchallpartial
5.
Philips
,
W. F.
,
2000
, “
An Accurate Closed Form Approximation for Dutch Roll
,”
AIAA
Paper No. 2000-0409.
6.
Perera
,
A. L. N. A.
,
2015
, “
Estimation of Characteristics of Dutch Roll for Model Aircraft at the Conceptual Design Phase
,”
Fifth International Research Symposium on Engineering Advancements
(
RSEA
), Malabe, Sri Lanka, Apr. 25, pp.
151
158
.http://www.saitm.edu.lk/fac_of_eng/RSEA/SAITM_RSEA_2015/imagenesweb/Theme_3/33.pdf
7.
Day
,
R. E.
,
1997
, “
Coupling Dynamics in Aircraft: A Historical Perspective
,” NASA Dryden Flight Research Center, Edwards, CA Technical Report No.
NASA-SP-532
.https://ntrs.nasa.gov/search.jsp?R=19970019603&hterms=Coupling+Dynamics+Aircraft+Historical+Perspective&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchallany%26Ntt%3DCoupling%2BDynamics%2Bin%2BAircraft%253A%2BA%2BHistorical%2BPerspective
8.
Ananthkrishnan
,
N.
, and
Unnikrishnan
,
S.
,
2001
, “
Literal Approximations to Aircraft Dynamic Modes
,”
J. Guid. Control Dyn.
,
24
(
6
), pp.
1196
1203
.
9.
Wen
,
X.
,
Sun
,
C. Z.
, and
Yin
,
L. L.
,
2014
, “
Application of Sideslip Angle Change Rate Feedback in Hypersonic Vehicle
,”
Ordnance Ind. Autom.
,
33
(
3
), pp.
72
76
.
10.
Singh
,
S.
, and
Murthy
,
T. V. R.
,
2013
, “
Design of an Optimal yaw Damper for 747 Jet Aircraft Model
,”
Emerging Res. Electron. Comput. Sci. Technol.
,
248
(
1
), pp.
801
810
.
11.
Dobrescu
,
B.
,
2010
, “
Damping of Oscillations in Dutch Roll Mode
,”
Annals of DAAAM for 2010 and Proceedings of the 21st International DAAAM Symposium
, Zadar, Croatia, Oct. 20–23, pp.
1217
1218
.http://www.freepatentsonline.com/article/Annals-DAAAM-Proceedings/246014174.html
12.
Wolowicz
,
C. H.
,
Strutz
,
L. W.
,
Gilyard
,
G. B.
, and
Matbeny
,
N. W.
,
1968
, “
Preliminary Flight Evaluation of the Stability and Control Derivatives and Dynamic Characteristics of the Unaugmented XB-70-1 Airplane Including Comparisons With Predictions
,” NASA Flight Research Center; Edwards, CA, Technical Report No.
NASA-TN-D-4578
https://ntrs.nasa.gov/search.jsp?R=19680015026&hterms=Preliminary+Flight+Evaluation+Stability+Control+Derivatives&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchallany%26Ntt%3DPreliminary%2BFlight%2BEvaluation%2Bof%2Bthe%2BStability%2Band%2BControl%2BDerivatives%2Band.
13.
Chand
,
S.
, and
Chiu
,
S.
,
1991
, “
Robustness Analysis of Fuzzy Control Systems With Application to Aircraft Roll Control
,”
AIAA
Paper No. 91-2799-CP.
14.
Stengel
,
R. F.
,
1993
, “
Toward Intelligent Flight Control
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
6
), pp.
1699
1717
.
15.
Choi
,
Y. H.
, and
Yoo
,
S. J.
,
2016
, “
A Simple Fuzzy-Approximation-Based Adaptive Control of Uncertain Unmanned Helicopters
,”
Int. J. Control Autom. Syst.
,
14
(
1
), pp.
340
349
.
16.
Liu
,
Z.
, and
Wang
,
Y.
,
2014
, “
Fuzzy Adaptive Tracking Control Within the Full Envelope for an Unmanned Aerial Vehicle
,”
Chin. J. Aeronaut.
,
27
(
5
), pp.
1273
1287
.
17.
Yang
,
F.
,
Yuan
,
R. Y.
,
Yi
,
J. Q.
,
Fan
,
G. L.
, and
Tan
,
X. M.
,
2013
, “
Direct Adaptive Type-2 Fuzzy Neural Network Control for a Generic Hypersonic Flight Vehicle
,”
Soft Comput.
,
17
(
11
), pp.
2053
2064
.
18.
Xu
,
B.
,
Shi
,
Z.
,
Yang
,
C.
, and
Sun
,
F.
,
2014
, “
Composite Neural Dynamic Surface Control of a Class of Uncertain Nonlinear Systems in Strict-Feedback Form
,”
IEEE Trans. Cybern.
,
44
(
12
), pp.
2026
2634
.
19.
Chen
,
M.
, and
Ge
,
S. S.
,
2015
, “
Adaptive Neural Output Feedback Control of Uncertain Nonlinear Systems With Unknown Hysteresis Using Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
62
(
12
), pp.
7706
7716
.
20.
Xu
,
B.
,
Yang
,
C.
, and
Pan
,
Y.
,
2015
, “
Global Neural Dynamic Surface Tracking Control of Strict-Feedback Systems With Application to Hypersonic Flight Vehicle
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
10
), pp.
2563
2575
.
21.
Chen
,
M.
,
Shi
,
P.
, and
Lim
,
C. C.
,
2016
, “
Adaptive Neural Fault-Tolerant Control of a 3-DOF Model Helicopter System
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
46
(
2
), pp.
260
270
.
22.
Hu
,
X. X.
,
Wu
,
L.
,
Hu
,
C. H.
, and
Gao
,
H.
,
2013
, “
Adaptive Fuzzy Integral Sliding Mode Control for Flexible Air-Breathing Hypersonic Vehicles Subject to Input Nonlinearity
,”
J. Aerosp. Eng.
,
26
(
4
), pp.
721
734
.
23.
Jiao
,
X.
,
Fidan
,
B.
,
Jiang
,
J.
, and
Kamel
,
M.
,
2015
, “
Adaptive Mode Switching of Hypersonic Morphing Aircraft Based on Type-2 TSK Fuzzy Sliding Mode Control
,”
Sci. China Inf. Sci.
,
58
(
7
), pp.
1
15
.
24.
Chern
,
T. L.
, and
Wu
,
Y. C.
,
1991
, “
Design of Integral Variable Structure Controller and Application to Electrohydraulic Velocity Servosystems
,”
IEEE Proc. D Control Theory Appl.
,
138
(
5
), pp.
439
444
.
25.
Seshagiri
,
S.
, and
Khalil
,
H. K.
,
2005
, “
Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators
,”
Automatica
,
41
(
1
), pp.
43
54
.
26.
Li
,
P.
, and
Zheng
,
Z. Q.
,
2011
, “
Sliding Mode Control Approach With Nonlinear Integrator
,”
Control Theory Appl.
,
28
(
3
), pp.
422
426
.
27.
Tombula
,
G.
, and
Banksa
,
S.
,
2009
, “
Sliding Mode Control for a Class of Non-Affine Nonlinear Systems
,”
Nonlinear Anal. Theory Methods Appl.
,
71
(
12
), pp.
e1589
e1597
.
28.
Xu
,
B.
,
Sun
,
F.
,
Pan
,
Y.
, and
Chen
,
B.
,
2016
, “
Disturbance Observer Based Composite Learning Fuzzy Control of Nonlinear Systems With Unknown Dead Zone
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
PP
(99), pp.
1
9
.
29.
Gutierrez
,
H. M.
, and
Ro
,
P. I.
,
2005
, “
Magnetic Servo Levitation by Sliding-Mode Control of Nonaffine Systems With Algebraic Input Invertibility
,”
IEEE Trans. Ind. Electron.
,
52
(
5
), pp.
1449
1455
.
30.
Karimi
,
B.
,
Zeinaly
,
E.
,
Shahgholian
,
G.
, and
Bahreini
,
S. M. A.
,
2014
, “
Nonaffine-Nonlinear Adaptive Control of an Aircraft Cabin Pressure System Using Neural Networks
,”
J. Aerosp. Eng.
,
27
(
3
), pp.
597
603
.
31.
BošKović
,
J. D.
,
Chen
,
L. J.
, and
Mehra
,
R. K.
,
2001
, “
Multivariable Adaptive Controller Design for a Class of Non-Affine Models Arising in Flight Control
,”
40th IEEE Conference on Decision and Control
(
CDC
), Orlando, FL, Dec. 4–7, pp.
2442
2477
.
32.
BošKović
,
J. D.
,
Chen
,
L. J.
, and
Mehra
,
R. K.
,
2004
, “
Adaptive Control Design for Nonaffine Models Arising in Flight Control
,”
J. Guid. Control Dyn.
,
27
(
2
), pp.
209
217
.
33.
Young
,
A.
,
Cao
,
C.
,
Patel
,
V.
, and
Hovakimyan
,
N.
,
2007
, “
Adaptive Control Design Methodology for Nonlinear-in-Control Systems in Aircraft Applications
,”
J. Guid. Control Dyn.
,
30
(
6
), pp.
1770
1782
.
34.
Vo
,
H.
, and
Seshagiri
,
S.
,
2008
, “
Robust Control of F-16 Lateral Dynamics
,”
IECON 2008
:
34th Annual Conference of IEEE Industrial Electronics
Orlando, FL, Nov. 10–13, pp.
343
348
.
35.
Wen
,
J.
, and
Jiang
,
C. S.
,
2011
, “
Adaptive Fuzzy Control for a Class of Chaotic Systems With Non-Affine Inputs
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
1
), pp.
475
492
.
36.
Polycarpou
,
M. M.
, and
Ioannou
,
P. A.
,
1993
, “
A Robust Adaptive Nonlinear Control Design
,”
Commun. Nonlinear Sci. Numer. Simul.
,
32
(
3
), pp.
1365
1369
.
37.
Tao
,
G.
,
1997
, “
A Simple Alternative to the Barbalat Lemma
,”
IEEE Trans. Autom. Control
,
42
(
5
), pp.
698
698
.
38.
Ge
,
S. S.
, and
Zhang
,
J.
,
2003
, “
Neural-Network Control of Nonaffine Nonlinear System With Zero Dynamics by State and Output Feedback
,”
IEEE Trans. Neural Networks
,
14
(
4
), pp.
900
918
.
39.
Krstic
,
M.
, and
Kokotovic
,
P. V.
,
1995
, “
Adaptive Nonlinear Design With Controller-Identifier Separation and Swapping
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
426
440
.
You do not currently have access to this content.