Electro-hydraulic load simulator (EHLS) is a typical closed-loop torque control system. It is used to simulate the load of aircraft actuator on ground hardware-in-the-loop simulation and experiments. In general, EHLS is fixed with actuator shaft together. Thus, the movement of actuator has interference torque named the surplus torque on the EHLS. The surplus torque is not only related to the velocity of the actuator movement, but also related to the frequency of actuator movement. Especially when the model of the actuator and EHLS is dissimilar, the surplus torque is obviously different on different frequencies. In order to eliminate the surplus torque for accurate load simulation, the actuator velocity input feedforword compensating method (AVIFC) is proposed in this paper. In this strategy, the actuator velocity synchronous signals are used for compensation of different frequency actuator movement to eliminate surplus torque on different frequencies. First, the mathematical model of EHLS and the actuator system is established. Based on the models, the AVIFC method is proposed. It reveals the reason that generates surplus torque on different frequencies of actuator. For verification, simulations and experiments are conducted to prove that the new strategy performs well against low, medium, and high frequency movement interference. The results show that this method can effectively suppress the surplus torque with different frequencies and improve precision of EHLS with actuator movement.

References

1.
Li
,
Y. H.
,
2002
, “
Development of Hybrid Control of Electrohydraulic Torque Load Simulator
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
3
), pp.
415
419
.
2.
Jiao
,
Z. X.
,
Gao
,
J. X.
,
Hua
,
Q.
, and
Wang
,
S. P.
,
2004
, “
The Velocity Synchronizing Control on the Electro-Hydraulic Load Simulator
,”
Chin. J. Aeronaut.
,
17
(
1
), pp.
39
46
.
3.
Wang
,
X. J.
,
Wang
,
S. P.
, and
Yao
,
B.
,
2013
, “
Adaptive Robust Torque Control of Electric Load Simulator With Strong Position Coupling Disturbance
,”
Int. J. Control Autom. Syst.
,
11
(
2
), pp.
325
332
.
4.
Truong
,
D. Q.
, and
Ahn
,
K. K.
,
2009
, “
Force Control for Hydraulic Load Simulator Using Self-Tuning Grey Predictor-Fuzzy PID
,”
Mechatronics
,
19
(
2
), pp.
233
246
.
5.
Wang
,
C.
,
Hou
,
Y. L.
,
Liu
,
R. Z.
,
Gao
,
Q.
, and
Hou
,
R. M.
,
2016
, “
Control of the Electric Load Simulator Using Fuzzy Multiresolution Wavelet Neural Network With Dynamic Compensation
,”
Shock Vib.
,
2016
, p. 3574214.
6.
Su D. H., Wu S. L., Fu X. W., and Liu Q. H.,
2000
, “
Eliminating Disturbance Torque by Angular Velocity Difference Based on Synchronization Compensation
,”
J. Harbin Inst. Technol.
,
32
(
1
), pp.
78
81
.
7.
Nasim, U., and Wang S. P.,
2014
, “
High Performance Direct Torque Control of Electrical Aerodynamics Load Simulator Using Adaptive Fuzzy Backstepping Control
,”
Acta Polytech. Hung.
,
229
(2), pp. 369–383.
8.
Nam
,
Y.
, and
Hong
,
S. K.
,
2002
, “
Force Control System Design for Aerodynamic Load Simulator
,”
Control Eng. Pract.
,
10
(
5
), pp.
549
558
.
9.
Wang
,
C. W.
,
Jiao
,
Z. X.
, and
Quan
,
L.
,
2015
, “
Adaptive Velocity Synchronization Compound Control of Electro-Hydraulic Load Simulator
,”
Aerosp. Sci. Technol.
,
42
, pp.
309
321
.
10.
Yao
,
J. Y.
,
Jiao
,
Z. X.
,
Shang
,
Y. X.
, and
Huang
,
C.
,
2010
, “
Adaptive Nonlinear Optimal Compensation Control for Electro-Hydraulic Load Simulator
,”
Chin. J. Aeronaut.
,
23
(
6
), pp.
720
733
.
11.
Huang
,
C.
, and
Fu
,
L.
,
2007
, “
Adaptive Approach to Motion Controller of Linear Induction Motor With Friction Compensation
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
480
490
.
12.
Yao
,
J. Y.
,
Jiao
,
Z. X.
,
Yao
,
B.
,
Shang
,
Y. X.
, and
Dong
,
W. B.
,
2012
, “
Nonlinear Adaptive Robust Force Control of Hydraulic Load Simulator
,”
Chin. J. Aeronaut.
,
25
(
5
), pp.
766
775
.
13.
Han, S., Jiao, Z., Yao, J., and Shang, Y.,
2014
, “
Compound Velocity-Synchronizing Control Strategy for Electro-Hydraulic Load Simulator and Its Engineering Applications
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
5
), p.
0510021
.
14.
Guan
,
C.
, and
Pan
,
S.
,
2008
, “
Adaptive Sliding Mode Control of Electro-Hydraulic System With Nonlinear Unknown Parameters
,”
Control Eng. Pract.
,
16
(
11
), pp.
1275
1284
.
15.
Wang
,
B.
,
Dong
,
Y.
, and
Zhao
,
K.
,
2010
, “
Compound Control for Hydraulic Flight Motion Simulator
,”
Chin. J. Aeronaut.
,
23
(
2
), pp.
240
245
.
16.
Wang
,
C. W.
,
Jiao
,
Z. X.
,
Wu
,
S.
, and
Shang
,
Y. X.
,
2013
, “
An Experimental Study of Dual-Loop Control of Electro-Hydraulic Load Simulator (EHLS)
,”
Chin. J. Aeronaut.
,
26
(
6
), pp.
1586
1595
.
17.
Seo
,
J.
,
Venugopal
,
R.
, and
Kenne
,
J.-P.
,
2007
, “
Feedback Linearization Based Control of a Rotational Hydraulic Drive
,”
Control Eng. Pract.
,
15
(
12
), pp.
1495
1507
.
18.
Mohanty
,
A.
, and
Yao
,
B.
,
2011
, “
Indirect Adaptive Robust Control of Hydraulic Manipulators With Accurate Parameter Estimates
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
567
575
.
19.
Wang
,
X. W.
,
Jiao
,
Z. X.
, and
Quan
,
L.
,
2015
, “
Nonlinear Robust Dual-Loop Control for Electro-Hydraulic Load Simulator
,”
ISA Trans.
,
59
(
11
), pp.
280
289
.
20.
Niu
,
G. C.
,
Wang
,
W.
, and
Zong
,
G. H.
,
2014
, “
Composite Control for Electric Load Simulator Based on Iterative Learning
,”
Control Theory Appl.
,
31
(12), pp.
1740
1747
.
21.
Sheng
,
Z.
, and
Li
,
Y.
,
2016
, “
Hybrid Robust Control Law With Disturbance Observer for High-Frequency Response Electro-Hydraulic Servo Loading System
,”
Appl. Sci.
,
6
(4), p.
98
.
22.
Zhao
,
J. S.
,
Shen
,
G.
,
Yang
,
C. F.
,
Liu
,
G.
,
Yin
,
L.
, and
Han
,
J.
,
2013
, “
Feel Force Control Incorporating Velocity Feed Forward and Inverse Model Observer for Control Loading System of Flight Simulator
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
227
, pp.
161
175
.
23.
Yao
,
J. Y.
,
Jiao
,
Z. X.
,
Ma
,
D. W.
, and
Yan
,
L.
,
2014
, “
High-Accuracy Tracking Control of Hydraulic Rotary Actuators With Modeling Uncertainties
,”
IEEE Trans. Control Syst. Mechatronics
,
19
(
2
)pp, pp.
633
641
.
24.
Xian
,
B.
,
Queiroz de
,
M. S.
,
Dawson
,
D. M.
, and
McIntyre
,
M. L.
,
2004
, “
A Discontinuous Output Feedback Controller and Velocity Observer for Nonlinear Mechanical Systems
,”
Automatica
,
40
(
4
), pp.
695
700
.
25.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
26.
Pedro
,
M. L. H.
,
Mettin
,
U.
,
Westerberg
, and
Shiriaev
,
A. S.
,
2009
, “
Modeling and Control of Hydraulic Rotary Actuators Used in Forestry Cranes
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
1315
1320
.
27.
Kim
,
W.
,
Won
,
D.
, and
Chung
,
C. C.
,
2010
, “
High Gain Observer Based Nonlinear Position Control for Electro-Hydraulic Servo Systems
,”
American Control Conference
(
ACC
), Baltimore, MD, June 30–July 2, pp.
1440
1446
.
28.
Heintze
, J. J.
,
Schothorst
,
G. V.
,
Weiden
,
A.
, and
Teerhuis
,
P. C.
,
1993
, “
Modelling and Control of an Industrial Hydraulic Rotary Vane Actuator
,”
Seventh International Heat Transfer Conference
, Munich, Germany, Sept. 6–10, pp.
1913
1918
.
29.
Shang
,
Y. X.
,
Yuan
,
H.
,
Jiao
,
Z. X.
, and
Yao
,
N.
,
2013
, “
Matching Design of Hydraulic Load Simulator With Aerocraft Actuator
,”
Chin. J. Aeronaut.
,
26
(
2
), pp.
470
480
.
30.
Kaddissi
,
C.
,
Kenne
,
J.-P.
, and
Saad
,
M.
,
2007
, “
Identification and Real-Time Control of an Electrohydraulic Servo System Based on Nonlinear Backstepping
,”
IEEE/ASME Trans. Mechatronics
,
12
(
1
), pp.
12
22
.
You do not currently have access to this content.