The Kalman filter has a long history of use in input deconvolution where it is desired to estimate structured inputs or disturbances to a plant from noisy output measurements. However, little attention has been given to the convergence properties of the deconvolved signal, in particular the conditions needed to estimate inputs and disturbances with zero bias. The paper draws on ideas from linear systems theory to understand the convergence properties of the Kalman filter when used for input deconvolution. The main result of the paper is to show that, in general, unbiased estimation of inputs using a Kalman filter requires both an exact model of the plant and an internal model of the input signal. We show that for unbiased estimation, an identified subblock of the Kalman filter that we term the plant model input generator (PMIG) must span all possible inputs to the plant and that the robustness of the estimator with respect to errors in model parameters depends on the eigenstructure of this subblock. We give estimates of the bias on the estimated inputs/disturbances when the model is in error. The results of this paper provide insightful guidance in the design of Kalman filters for input deconvolution.

References

1.
Bayless
,
J. W.
, and
Brigham
,
E. O.
,
1970
, “
Application of the Kalman Filter to Continuous Signal Restoration
,”
Geophys.
,
35
(
1
), pp.
2
23
.
2.
Crump
,
N. D.
,
1974
, “
A Kalman Filter Approach to the Deconvolution of Seismic Signals
,”
Geophys.
,
39
(
1
), pp.
1
13
.
3.
Dimri
,
V.
,
1992
,
Deconvolution and Inverse Theory
,
Elsevier Publishing Company
, Amsterdam, The Netherlands.
4.
Leite
,
L. W. B.
, and
da Rocha
,
M. P. C.
,
2000
, “
Deconvolution of Non-Stationary Seismic Process
,”
Rev. Bras. Geof.
,
18
(
1
), pp.
75
89
.
5.
Rocha
,
M. P.
, and
Leite
,
L. W.
,
2003
, “
Treatment of Geophysical Data as a Non-Stationary Process
,”
Mat. Apl. Comput.
,
22
(
2
), pp.
149
166
.
6.
Stalford
,
H. L.
,
1981
, “
High-Alpha Aerodynamic Model Identification of T-2C Aircraft Using the EBM Method
,”
J. Aircr.
,
18
(
10
), pp.
801
809
.
7.
Sri-Jayantha
,
M.
, and
Stengel
,
R. F.
,
1988
, “
Determination of Nonlinear Aerodynamic Coefficients Using the Estimation-Before-Modeling Method
,”
J. Aircr.
, pp.
796
804
.
8.
Ray
,
L. R.
,
Ramasubramanian
,
A.
, and
Townsend
,
J.
,
2001
, “
Adaptive Friction Compensation Using Extended Kalman-Bucy Filter Friction Estimation
,”
Control Eng. Practice
,
9
(
2
), pp.
169
179
.
9.
Ray
,
L. R.
,
Townsend
,
J.
, and
Ramasubramanian
,
A.
,
2001
, “
Optimal Filtering and Bayesian Detection for Friction-Based Diagnostics in Machines
,”
ISA Trans.
,
40
(
3
), pp.
207
221
.
10.
Austin
,
K. J.
, and
McAree
,
P. R.
,
2007
, “
Transmission Friction in an Electric Mining Shovel
,”
J. Field Rob.
,
24
(
10
), pp.
863
875
.
11.
Ray
,
L. R.
,
1995
, “
Nonlinear State and Tire Force Estimation for Advanced Vehicle Control
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
117
124
.
12.
Ray
,
L. R.
,
1997
, “
Nonlinear Tire Force Estimation and Road Friction Identification: Simulation and Experiments
,”
Automatica
,
33
(
10
), pp.
1819
1833
.
13.
Siegrist
,
P.
, and
McAree
,
P. R.
,
2006
, “
Tyre-Force Estimation by Kalman Inverse Filtering: Applications to Off-Highway Mining Trucks
,”
Veh. Syst. Dyn.
,
44
(
12
), pp.
921
937
.
14.
Reid
,
A. W.
,
McAree
,
P. R.
,
Meehan
,
P.
, and
Gurgenci
,
H.
,
2014
, “
Longwall Shearer Cutting Force Estimation
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031008
.
15.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
,
1979
, “
Solutions of Ill-Posed Problems
,”
SIAM Rev.
,
21
(2), pp. 266–267.
16.
De Nicolao
,
G.
, and
Ferrari-Trecate
,
G.
,
2001
, “
Regularization Networks: Fast Weight Calculation Via Kalman Filtering
,”
IEEE Trans. Neural Networks
,
12
(
2
), pp.
228
235
.
17.
De Nicolao
,
G.
, and
Ferrari-Trecate
,
G.
,
2003
, “
Regularization Networks for Inverse Problems: A State-Space Approach
,”
Automatica
,
39
(
4
), pp.
669
676
.
18.
Francis
,
B. A.
, and
Wonham
,
W.
,
1976
, “
The Internal Model Principle of Control Theory
,”
Automatica
,
12
(
5
), pp.
457
465
.
19.
Gelb
,
A.
,
1974
,
Applied Optimal Estimation
,
MIT Press
, Cambridge, MA.
20.
Gantmacher
,
F. R.
,
1959
,
The Theory of Matrices
, Vol.
1
, American Mathematical Society, Providence, RI.
21.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
,
Matrix Analysis
,
Cambridge University Press
, Cambridge, UK.
22.
Datta
,
B. N.
,
1994
, “
Linear and Numerical Linear Algebra in Control Theory: Some Research Problems
,”
Linear Algebra Appl.
,
197–198
, pp.
755
790
.
23.
Casti
,
J. L.
,
1987
,
Linear Dynamical Systems
,
Academic Press
, Orlando, FL.
You do not currently have access to this content.