Abstract

The use of variable speed control moment gyroscope (VSCMG) is an effective way for attitude stabilization of aerospace devices. It is possible to control the oscillation and direction rate of change in rigid bodies in space due to the controlled change of angular momentum rate. Thus, this paper proposes an atypical pendulum configuration controlled by a VSCMG actuator. The idea of the VSCMG pendulum (VSCMGP) is to use both the angular momentum variation in amplitude and direction to implement the control. The controller is designed using Lyapunov theory to stabilize the pendulum in the inverted position. The results illustrate the control using a VSCMG in an inverted pendulum showing how the stabilization of an inverted pendulum is performed using two control actions. Also, the comparison of the proposed pendulum with a classical configuration is presented.

References

1.
Rui
,
C.
,
Kolmanovsky
,
I. V.
, and
McClamroch
,
N. H.
,
2000
, “
Nonlinear Attitude and Shape Control of Spacecraft With Articulated Appendages and Reaction Wheels
,”
IEEE Trans. Autom. Control
,
45
(
8
), pp.
1455
1469
.10.1109/9.871754
2.
Nudehi
,
S. S.
,
Farooq
,
U.
,
Alasty
,
A.
, and
Issa
,
J.
,
2008
, “
Satellite Attitude Control Using Three Reaction Wheels
,”
American Control Conference
(
ACC
), Seattle, WA, June 11–13, pp.
4850
4855
.10.1109/ACC.2008.4587262
3.
Jepsen
,
F.
,
Soborg
,
A.
,
Pedersen
,
A. R.
, and
Yang
,
Z.
,
2009
, “
Development and Control of an Inverted Pendulum Driven by a Reaction Wheel
,”
International Conference on Mechatronics and Automation
(
ICMA
), Changchun, China, Aug. 9–12, pp.
2829
2834
.10.1109/ICMA.2009.5246460
4.
Ismail
,
Z.
, and
Varatharajoo
,
R.
,
2010
, “
A Study of Reaction Wheel Configurations for a 3-Axis Satellite Attitude Control
,”
Adv. Space Res.
,
45
(
6
), pp.
750
759
.10.1016/j.asr.2009.11.004
5.
Sperry
,
E. A.
,
1913
, “
Engineering Applications of the Gyroscope
,”
J. Franklin Inst.
,
175
(
5
), pp.
447
482
.10.1016/S0016-0032(13)90982-0
6.
Deimel
,
R. F.
,
1950
,
Mechanics of the Gyroscope: The Dynamics of Rotation
,
Dover
,
Mineola, NY
.
7.
Scarborough
,
J. B.
,
1958
,
The Gyroscope: Theory and Applications
,
Interscience Publishers
,
Geneva, Switzerland
.
8.
Cannon
,
R. H.
,
1967
,
Dynamics of Physical Systems
,
McGraw-Hill
,
New York
.
9.
Whittaker
,
E.
, and
McCrae
,
W.
,
1988
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
.
Cambridge Mathematical Library, Cambridge University Press
,
New York
.
10.
Schaub
,
H.
, and
Junkins
,
J. L.
,
2014
,
Analytical Mechanics of Space Systems
, 3rd ed.,
AIAA Education Series
,
Reston, VA
.
11.
Goldstein
,
H.
,
Poole
,
C. P.
, and
Safko
,
J.
,
2011
,
Classical Mechanics
, 9th ed.,
Pearson
,
New York
.
12.
Spong
,
M. W.
,
Corke
,
P.
, and
Lozano
,
R.
,
2001
, “
Nonlinear Control of the Reaction Wheel Pendulum
,”
Automatica
,
37
(
11
), pp.
1845
1851
.10.1016/S0005-1098(01)00145-5
13.
Lee
,
S.-H.
, and
Goswami
,
A.
,
2007
, “
Reaction Mass Pendulum (RMP): An Explicit Model for Centroidal Angular Momentum of Humanoid Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp.
4667
4672
. 10.1109/ROBOT.2007.364198
14.
Sanyal
,
A. K.
, and
Goswami
,
A.
,
2013
, “
Dynamics and Balance Control of the Reaction Mass Pendulum: A Three-Dimensional Multibody Pendulum With Variable Body Inertia
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021002
.10.1115/1.4025607
15.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2001
, “
The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Maui, HI, Oct. 29–Nov. 3, pp.
239
246
.10.1109/IROS.2001.973365
16.
Sugihara
,
T.
,
Nakamura
,
Y.
, and
Inoue
,
H.
,
2002
, “
Real-Time Humanoid Motion Generation Through Zmp Manipulation Based on Inverted Pendulum Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA'02
), Washington, DC, May 11–15, pp.
1404
1409
.10.1109/ROBOT.2002.1014740
17.
Grasser
,
F.
,
D'Arrigo
,
A.
,
Colombi
,
S.
, and
Rufer
,
A. C.
,
2002
, “
Joe: A Mobile, Inverted Pendulum
,”
IEEE Trans. Ind. Electron.
,
49
(
1
), pp.
107
114
.10.1109/41.982254
18.
Furuta
,
K.
,
2003
, “
Control of Pendulum: From Super Mechano-System to Human Adaptive Mechatronics
,”
42nd IEEE International Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 9–12, pp.
1498
1507
.10.1109/CDC.2003.1272824
19.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Resolved Momentum Control: Humanoid Motion Planning Based on the Linear and Angular Momentum
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
2003), Las Vegas, NV, Oct. 27–31, pp.
1644
1650
.10.1109/IROS.2003.1248880
20.
Kajita
,
S.
,
Morisawa
,
M.
,
Miura
,
K.
,
Nakaoka
,
S.
,
Harada
,
K.
,
Kaneko
,
K.
,
Kanehiro
,
F.
, and
Yokoi
,
K.
,
2010
, “
Biped Walking Stabilization Based on Linear Inverted Pendulum Tracking
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
4489
4496
.10.1109/IROS.2010.5651082
21.
Tsai
,
Y.-Y.
,
Lin
,
W.-C.
,
Cheng
,
K. B.
,
Lee
,
J.
, and
Lee
,
T.-Y.
,
2010
, “
Real-Time Physics-Based 3D Biped Character Animation Using an Inverted Pendulum Model
,”
IEEE Trans. Visualization Comput. Graphics
,
16
(
2
), pp.
325
337
.10.1109/TVCG.2009.76
22.
Yang
,
C.
,
Li
,
Z.
,
Cui
,
R.
, and
Xu
,
B.
,
2014
, “
Neural Network-Based Motion Control of an Underactuated Wheeled Inverted Pendulum Model
,”
IEEE Trans. Neural Networks Learn. Syst.
,
25
(
11
), pp.
2004
2016
.10.1109/TNNLS.2014.2302475
23.
Vasudevan
,
H.
,
Dollar
,
A. M.
, and
Morrell
,
J. B.
,
2015
, “
Design for Control of Wheeled Inverted Pendulum Platforms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041005
.10.1115/1.4029401
24.
Jeong
,
S.
, and
Hayashi
,
T.
,
2018
, “
Development of a Wheeled Inverted Pendulum Mobile Platform With a Four-Bar Parallel Mechanism
,”
Adv. Rob.
,
32
(
4
), pp.
191
201
.10.1080/01691864.2018.1433062
25.
Liu
,
C.
,
Ning
,
J.
, and
Chen
,
Q.
,
2018
, “
Dynamic Walking Control of Humanoid Robots Combining Linear Inverted Pendulum Mode With Parameter Optimization
,”
Int. J. Adv. Rob. Syst.
,
15
(
1
), epub.10.1177/1729881417749672
26.
An
,
K.
,
Liu
,
Y.
,
Li
,
Y.
,
Zhang
,
Y.
, and
Liu
,
C.
,
2018
, “
Energetic Walking Gaits Studied by a Simple Actuated Inverted Pendulum Model
,”
J. Mech. Sci. Technol.
,
32
(
5
), pp.
2273
2281
.10.1007/s12206-018-0438-8
27.
He
,
C.
,
Huang
,
K.
,
Chen
,
X.
,
Zhang
,
Y.
, and
Zhao
,
H.
,
2018
, “
Transportation Control of Cooperative Double-Wheel Inverted Pendulum Robots Adopting Udwadia-Control Approach
,”
Nonlinear Dyn.
,
91
(
4
), pp. 2789–2802.10.1007/s11071-018-4046-z
28.
Bailey
,
D. A.
,
2000
, “
CMG Control Based on Angular Momentum to Control Satellite Attitude
,”
U.S. Patent No. 6,128,556.
29.
Bailey
,
D. A.
,
2000
, “
Orienting a Satellite With Controlled Momentum Gyros
,”
U.S. Patent No. 6,154,691.
30.
Han
,
C.
, and
Pechev
,
A. N.
,
2007
, “
Underactuated Satellite Attitude Control With Two Parallel CMGS
,”
IEEE International Conference on Control and Automation
(
ICCA
), Guangzhou, China, May 30–June 1, pp.
666
670
.10.1109/ICCA.2007.4376438
31.
MacKunis
,
W.
,
Dupree
,
K.
,
Bhasin
,
S.
, and
Dixon
,
W.
,
2008
, “
Adaptive Neural Network Satellite Attitude Control in the Presence of Inertia and CMG Actuator Uncertainties
,”
American Control Conference
(
ACC
), Seattle, WA, June 11–13, pp.
2975
2980
.10.1109/ACC.2008.4586948
32.
Clark
,
C.
,
Worrall
,
K.
, and
Yavuzoğlu
,
E.
,
2010
, “
A Control Moment Gyro for Dynamic Attitude Control of Small Satellites
,”
24th Annual AIAA/USU Conference on Small Satellites
, Logan, UT, Aug. 9–12, Paper No. SSC10-XI-8.https://pdfs.semanticscholar.org/9d94/7a74f5fbf013efabb88d29dcea8dfcc7bd4b.pdf
33.
Noumi
,
A.
, and
Takahashi
,
M.
,
2013
, “
Fault-Tolerant Attitude Control Systems for a Satellite Equipped With Control Moment Gyros
,”
AIAA
Paper No.
2013-5119. 10.2514/6.2013-5119
34.
Senda
,
K.
,
Murotsu
,
Y.
,
Nagaoka
,
H.
, and
Mitsuya
,
A.
,
1995
, “
Attitude Control for Free-Flying Space Robot With CMG
(Control Moment Gyroscopes),”
AIAA
Paper No. 95-3336-CP.
10.2514/6.1995-3336
35.
Roser
,
X.
, and
Sghedoni
,
M.
,
1997
, “
Control Moment Gyroscopes (CMG's) and Their Application in Future Scientific Missions
,” Third ESA International Conference on Spacecraft Guidance, Navigation and Control Sustems, Noordwijk, The Netherlands, Nov. 26–29, pp. 523–528.
36.
Omagari
,
K.
,
Fujihashi
,
K.
, and
Matunaga
,
S.
,
2008
, “
CMG Configuration and Control for Rapid Attitude Maneuver of Small Spacecraft
,”
Ninth International Symposium on Artificial Intelligence, Robotics and Automation in Space
, Hollywood, Feb. 26–29, pp.
26
29
.
37.
Berry
,
A.
,
Lemus
,
D.
,
Babuška
,
R.
, and
Vallery
,
H.
,
2016
, “
Directional Singularity-Robust Torque Control for Gyroscopic Actuators
,”
IEEE/ASME Trans. Mechatronics
,
21
(
6
), pp.
2755
2763
.10.1109/TMECH.2016.2603601
38.
Lemus
,
D.
,
van Frankenhuyzen
,
J.
, and
Vallery
,
H.
,
2017
, “
Design and Evaluation of a Balance Assistance Control Moment Gyroscope
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051007
.10.1115/1.4037255
39.
Schaub
,
H.
,
Vadali
,
S. R.
, and
Junkins
,
J. L.
,
1998
, “
Feedback Control Law for Variable Speed Control Moment Gyros
,”
J. Astronaut. Sci.
,
46
(
3
), pp.
307
328
.
40.
Schaub
,
H.
, and
Junkins
,
J. L.
,
2000
, “
Singularity Avoidance Using Null Motion and Variable-Speed Control Moment Gyros
,”
J. Guid., Control, Dyn.
,
23
(
1
), pp.
11
16
.10.2514/2.4514
41.
McMahon
,
J.
, and
Schaub
,
H.
,
2009
, “
Simplified Singularity Avoidance Using Variable-Speed Control Moment Gyroscope Null Motion
,”
J. Guid., Control, Dyn.
,
32
(
6
), pp.
1938
1943
.10.2514/1.45433
42.
Stevenson
,
D.
, and
Schaub
,
H.
,
2012
, “
Nonlinear Control Analysis of a Double-Gimbal Variable-Speed Control Moment Gyroscope
,”
J. Guid., Control, Dyn.
,
35
(
3
), pp.
787
793
.10.2514/1.56104
43.
Mukherjee
,
R.
, and
Chen
,
D.
,
1993
, “
Asymptotic Stability Theorem for Autonomous Systems
,”
J. Guid., Control, Dyn.
,
16
(
5
), pp.
961
963
.10.2514/3.21108
44.
Junkins
,
J. L.
,
1978
,
An Introduction to Optimal Estimation of Dynamical Systems
,
3
,
Kluwer Academic Pub
,
Dordrecht, The Netherlands
.
45.
Dorf
,
R. C.
, and
Bishop
,
R. H.
,
2011
,
Modern Control Systems
,
Pearson
,
New York
.
You do not currently have access to this content.