Abstract

Centrifugal pumps (CPs) fail due to anomalies in fluid flow patterns and/or due to failure of mechanical subsystems in them. In this work, a technique built on the multiclass support vector machine (MSVM) is developed to identify multiple faults in the CP. In addition, the complex problem of fault combinations and their classification is dealt with in this work. The combination of features from motor line current sensors and accelerometers is used to train the algorithm. To take into account the transient as well as harmonic components of fault signatures, continuous wavelet transform (CWT) analysis is used. Thereafter, the most important information from the CWT coefficients is selected using the two proposed novel methods CWT-based on energy (BE)-MSVM and CWT-principal component analysis (PCA)-MSVM, which are BE as well as PCA, respectively. It is experimentally observed that faults in the CPs have a very strong association with its operating speed. Thus, in order to make the CP versatile in operation, it is important that the fault diagnosis methodology is also efficient at large speed range of CP operation. This work attempts to develop a fault classification methodology, which is independent of the CP operating speed.

References

1.
Tiwari
,
R.
,
2017
,
Rotor Systems: Analysis and Identification
,
CRC Press
,
Boca Raton, FL
.
2.
Sakthivel
,
N.
,
Sugumaran
,
V.
, and
Babudevasenapati
,
S.
,
2010
, “
Vibration Based Fault Diagnosis of Monoblock Centrifugal Pump Using Decision Tree
,”
Expert Syst. Appl.
,
37
(
6
), pp.
4040
4049
.10.1016/j.eswa.2009.10.002
3.
Albraik
,
A.
,
Althobiani
,
F.
,
Gu
,
F.
, and
Ball
,
A.
,
2012
, “
Diagnosis of Centrifugal Pump Faults Using Vibration Methods
,”
J. Phys.: Conf. Ser.
,
364
, p.
012139
.10.1088/1742-6596/364/1/012139
4.
Muralidharan
,
V.
, and
Sugumaran
,
V.
,
2012
, “
A Comparative Study of Naïve Bayes Classifier and Bayes Net Classifier for Fault Diagnosis of Monoblock Centrifugal Pump Using Wavelet Analysis
,”
Appl. Soft Comput.
,
12
(
8
), pp.
2023
2029
.10.1016/j.asoc.2012.03.021
5.
Muralidharan
,
V.
, and
Sugumaran
,
V.
,
2013
, “
Rough Set Based Rule Learning and Fuzzy Classification of Wavelet Features for Fault Diagnosis of Monoblock Centrifugal Pump
,”
Measurement
,
46
(
9
), pp.
3057
3063
.10.1016/j.measurement.2013.06.002
6.
Azizi
,
R.
,
Attaran
,
B.
,
Hajnayeb
,
A.
,
Ghanbarzadeh
,
A.
, and
Changizian
,
M.
,
2017
, “
Improving Accuracy of Cavitation Severity Detection in Centrifugal Pumps Using a Hybrid Feature Selection Technique
,”
Measurement
,
108
, pp.
9
17
.10.1016/j.measurement.2017.05.020
7.
Bordoloi
,
D. J.
, and
Tiwari
,
R.
,
2017
, “
Identification of Suction Flow Blockages and Casing Cavitations in Centrifugal Pumps by Optimal Support Vector Machine Techniques
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
8
), pp.
1
12
.10.1007/s40430-017-0714-z
8.
Rapur
,
J. S.
, and
Tiwari
,
R.
,
2017
, “
Experimental Time-Domain Vibration-Based Fault Diagnosis of Centrifugal Pumps Using Support Vector Machine
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
3
(
4
), p.
044501
.10.1115/1.4035440
9.
Harihara
,
P. P.
, and
Parlos
,
A. G.
,
2006
, “
Sensorless Detection of Cavitation in Centrifugal Pumps
,”
ASME
Paper No. IMECE2006-14655.10.1115/IMECE2006-14655
10.
Harihara
,
P. P.
, and
Parlos
,
A. G.
,
2008
, “
Sensorless Detection of Impeller Cracks in Motor Driven Centrifugal Pumps
,”
ASME
Paper No. IMECE2008-66273.10.1115/IMECE2008-66273
11.
Peng
,
Z. K.
, and
Chu
,
F. L.
,
2004
, “
Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: A Review With Bibliography
,”
Mech. Syst. Signal Process.
,
18
(
2
), pp.
199
221
.10.1016/S0888-3270(03)00075-X
12.
Yunlong
,
Z.
, and
Peng
,
Z.
,
2012
, “
Vibration Fault Diagnosis Method of Centrifugal Pump Based on EMD Complexity Feature and Least Square Support Vector Machine
,”
Energy Procedia
,
17
, pp.
939
945
.10.1016/j.egypro.2012.02.191
13.
Muralidharan
,
V.
, and
Sugumaran
,
V.
,
2013
, “
Selection of Discrete Wavelets for Fault Diagnosis of Monoblock Centrifugal Pump Using the J48 Algorithm
,”
Appl. Artif. Intell.
,
27
(
1
), pp.
1
19
.10.1080/08839514.2012.721694
14.
Kumar
,
A.
, and
Kumar
,
R.
,
2017
, “
Time-Frequency Analysis and Support Vector Machine in Automatic Detection of Defect From Vibration Signal of Centrifugal Pump
,”
Measurement
,
108
, pp.
119
133
.10.1016/j.measurement.2017.04.041
15.
Yan
,
R.
,
Gao
,
R. X.
, and
Chen
,
X.
,
2014
, “
Wavelets for Fault Diagnosis of Rotary Machines: A Review With Applications
,”
Signal Process.
,
96
, pp.
1
15
.10.1016/j.sigpro.2013.04.015
16.
Wu
,
J.-D.
, and
Chen
,
J.-C.
,
2006
, “
Continuous Wavelet Transform Technique for Fault Signal Diagnosis of Internal Combustion Engines
,”
NDT E Int.
,
39
, pp.
304
311
.10.1016/j.ndteint.2005.09.002
17.
Gangsar
,
P.
, and
Tiwari
,
R.
,
2018
, “
Multifault Diagnosis of Induction Motor at Intermediate Operating Conditions Using Wavelet Packet Transform and Support Vector Machine
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
8
), p.
081014
.10.1115/1.4039204
18.
Mohammad Taghi
,
S.-T.
,
Mir Mohammad
,
E.
,
Saeed
,
L.
, and
Hamed
,
S.
,
2017
, “
Cavitation Intensity Monitoring in an Axial Flow Pump Based on Vibration Signals Using Multi-Class Support Vector Machine
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
17
), pp.
3013
3026
.10.1177/0954406217729416
19.
Muralidharan
,
V.
,
Sugumaran
,
V.
, and
Indira
,
V.
,
2014
, “
Fault Diagnosis of Monoblock Centrifugal Pump Using SVM
,”
Eng. Sci. Technol, Int. J.
,
17
(
3
), pp.
152
157
.10.1016/j.jestch.2014.04.005
20.
Widodo
,
A.
, and
Yang
,
B.-S.
,
2007
, “
Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2560
2574
.10.1016/j.ymssp.2006.12.007
21.
Samanta
,
B.
,
Al-Balushi
,
K. R.
, and
Al-Araimi
,
S. A.
,
2003
, “
Artificial Neural Networks and Support Vector Machines With Genetic Algorithm for Bearing Fault Detection
,”
Eng. Appl. Artif. Intell.
,
16
(
7–8
), pp.
657
665
.10.1016/j.engappai.2003.09.006
22.
Rapur
,
J. S.
, and
Tiwari
,
R.
,
2017
, “
A Compliant Algorithm to Diagnose Multiple Centrifugal Pump Faults With Corrupted Vibration and Current Signatures in Time-Domain
,”
ASME
Paper No. GTINDIA2017-4615.10.1115/GTINDIA2017-4615
23.
Kléma
,
J.
,
Flek
,
O.
,
Kout
,
J.
, and
Nováková
,
L.
,
2005
, “
Intelligent Diagnosis and Learning in Centrifugal Pumps
,”
Emerging Solutions for Future Manufacturing Systems, Sixth IFIP International Conference on Information Technology for Balanced Automation Systems in Manufacturing and Services
,
Springer
,
Boston, MA
, pp.
513
522
.
24.
Zidani
,
F.
,
Diallo
,
D.
,
Benbouzid
,
M.
, and
Naït-Saïd
,
R.
,
2008
, “
A Fuzzy-Based Approach for the Diagnosis of Fault Modes in a Voltage-Fed PWM Inverter Induction Motor Drive
,”
IEEE Trans. Industrial Electronics
,
55
(
2
), pp.
586
596
.10.1109/TIE.2007.911951ff. ffhal-00524628f
25.
Wolfram
,
A.
,
Fussel
,
D.
,
Brune
,
T.
, and
Isermann
,
R.
,
2001
, “
Component-Based Multi-Model Approach for Fault Detection and Diagnosis of a Centrifugal Pump
,”
American Control Conference,
(
ACC
)
Arlington, VA
,
June 25–27
, pp.
4443
4448
.10.1109/ACC.2001.945678
26.
Frazer
,
H.
,
1981
, “
Flow Recirculation in Centrifugal Pumps
,” Texas A&M University, Turbomachinery Laboratories, pp. 95–100, accessed July 29, 2019, http://hdl.handle.net/1969.1/163728
27.
Tse
,
P. W.
,
Yang
,
W-X.
, and
Tam
,
H. Y.
,
2004
, “
Machine Fault Diagnosis Through an Effective Exact Wavelet Analysis
,”
J. Sound Vib.
,
277
(
4–5
), pp.
1005
1024
.10.1016/j.jsv.2003.09.031
28.
Qi
,
X.
, and
Neupauer
,
R. M.
,
2008
, “
Wavelet Analysis of Dominant Scales of Heterogeneous Porous Media
,”
Water Resour. Res.
,
44
(
9
), pp.
1
12
.10.1029/2006WR005720
29.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
2
(
4
), pp.
433
459
.10.1002/wics.101
30.
Vapnik
,
V. N.
,
1998
,
Statistical Learning Theory
, Vol.
1
,
Wiley
,
New York
.
31.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
32.
Vapnik
,
V. N.
,
1999
, “
An Overview of Statistical Learning Theory
,”
IEEE Trans. Neural Networks
,
10
(
5
), pp.
988
999
.10.1109/72.788640
33.
Chang
,
C.-C.
, and
Lin
,
C.-J.
,
2011
, “
LIBSVM: A Library for Support Vector Machines
,”
ACM Trans. Intell. Syst. Technol.
,
2
(
3
), pp.
1
27
.10.1145/1961189.1961199
You do not currently have access to this content.