Abstract

The market concern of improvement of vehicle safety and its convenience to drive a vehicle has resulted in the growth of the demand for vehicular electronic equipment. This trend requires additional power in the vehicle and thus makes prone to the increase of fuel consumption for vehicles equipped with internal combustion engines. To minimize this fuel consumption, an efficient energy management (EM) strategy for the electrical system of alternator and battery is required. This paper proposes a successful EM strategy based on the rule-based alternator control using predictive information. The proposed strategy reduces fuel consumption by charging batteries using the residual kinetic energy during deceleration. In particular, we predict electrical energy that is recovered by the residual energy using a Markov chain-based velocity prediction algorithm. The accommodation of predicted electrical energy and current vehicle information determines one of the three predefined control modes, such as charge, hold, and discharge, depending on vehicle driving states. This control mode determines the power generation from the alternator and controls the amount of torque to the vehicle electrical system. The proposed strategy is verified through simulation and experiment. The simulation with the new EM strategy is validated as comparing the operation difference with a conventional proportional-integral (PI) control algorithm under the same driver behaviors. Further validation in real vehicle driving experiment shows that fuel consumption was reduced by 2.1% compared to the conventional PI control algorithm.

References

1.
Lee
,
W.
,
Choi
,
D.
, and
Sunwoo
,
M.
,
2002
, “
Modelling and Simulation of Vehicle Electric Power System
,”
J. Power Sources
,
109
(
1
), pp.
58
66
.10.1016/S0378-7753(02)00033-2
2.
Soong
,
W. L.
,
Ertugrul
,
N.
,
Lovelace
,
E. C.
, and
Jahns
,
T. M.
,
2001
, “
Investigation of Interior Permanent Magnet Offset-Coupled Automotive Integrated Starter/Alternator
,”
IEEE
36th IAS Annual Meeting Industry Applications Conference
, Sept. 30–Oct. 4, Chicago, IL, pp.
429
436
.10.1109/IAS.2001.955456
3.
Kassakian
,
J. G.
,
Miller
,
J. M.
, and
Traub
,
N.
,
2000
, “
Automotive Electronics Power Up
,”
IEEE Spectr.
,
37
(
5
), pp.
34
39
.10.1109/6.842132
4.
Kim
,
H.
,
Shin
,
J.
, and
Sunwoo
,
M.
,
2017
, “
A Predictive Energy Management Strategy Using a Rule-Based Mode Switch for Internal Combustion Engine (ICE) Vehicles
,”
SAE Int. J. Engines
,
10
(
2
), p.
608
.10.4271/2017-01-0584
5.
Kessels
,
J. T. B. A.
,
Koot
,
M.
,
de Jager
,
B.
,
van den Bosch
,
P. P. J.
,
Aneke
,
N. P. I.
, and
Kok
,
D. B.
,
2007
, “
Energy Management for the Electric Powernet in Vehicles With a Conventional Drivetrain
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
494
505
.10.1109/TCST.2007.894646
6.
Waldman
,
C.
,
Gurusubramanian
,
S.
,
Fiorentini
,
L.
, and
Canova
,
M.
,
2015
, “
A Model-Based Supervisory Energy Management Strategy for a 12V Vehicle Electrical System
,”
Control Eng. Pract.
,
44
, pp.
20
30
.10.1016/j.conengprac.2015.05.011
7.
Koot
,
M.
,
Kessels
,
J. T. B. A.
,
de Jager
,
B.
,
Heemels
,
W. P. M. H.
,
Van den Bosch
,
P. P. J.
, and
Steinbuch
,
M.
,
2005
, “
Energy Management Strategies for Vehicular Electric Power Systems
,”
IEEE Trans. Veh. Technol.
,
54
(
3
), pp.
771
782
.10.1109/TVT.2005.847211
8.
Nguyen
,
A.
,
Lauber
,
J.
, and
Dambrine
,
M.
,
2014
, “
Optimal Control Based Algorithms for Energy Management of Automotive Power Systems With Battery/Supercapacitor Storage Devices
,”
Energy Convers. Manage.
,
87
, pp.
410
420
.10.1016/j.enconman.2014.07.042
9.
Huang
,
Y.
,
Wang
,
H.
,
Khajepour
,
A.
,
He
,
H.
, and
Ji
,
J.
,
2017
, “
Model Predictive Control Power Management Strategies for HEVs: A Review
,”
J. Power Sources
,
341
, pp.
91
106
.10.1016/j.jpowsour.2016.11.106
10.
Wu
,
C.
,
Teo
,
K. L.
, and
Wu
,
S.
,
2013
, “
Min–Max Optimal Control of Linear Systems With Uncertainty and Terminal State Constraints
,”
Automatica
,
49
(
6
), pp.
1809
1815
.10.1016/j.automatica.2013.02.052
11.
Fukushima
,
H.
, and
Bitmead
,
R. R.
,
2005
, “
Robust Constrained Predictive Control Using Comparison Model
,”
Automatica
,
41
(
1
), pp.
97
106
.10.1016/j.automatica.2004.08.010
12.
Wei
,
X.
,
Guzzella
,
L.
,
Utkin
,
V. I.
, and
Rizzoni
,
G.
,
2007
, “
Model-Based Fuel Optimal Control of Hybrid Electric Vehicle Using Variable Structure Control Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
1
), p.
13
.10.1115/1.2397148
13.
Fathy
,
H. K.
,
Kang
,
D.
, and
Stein
,
J. L.
,
2008
, “
Online Vehicle Mass Estimation Using Recursive Least Squares and Supervisory Data Extraction
,”
American Control Conference
, Seattle, WA, June 11–13, pp.
1842
1848.
10.1109/ACC.2008.4586760
14.
Weng
,
C.
,
Zhang
,
X.
, and
Sun
,
J.
,
2013
, “
Adaptive Model Predictive Control for Hybrid Electric Vehicles Power Management
,”
32nd Chinese Control Conference
, Xian, China, July, 26–28, pp.
7756
7761
.https://ieeexplore.ieee.org/document/6640805
15.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K.-C.
,
Besenhard
,
J. O.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
.10.1016/j.jpowsour.2005.01.006
16.
Lakshminarasimhan
,
V.
, and
Athani
,
G.
,
2013
, “
An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement
,”
SAE
Paper No. 2013-01-1750. 10.1115/2013-01-1750
17.
Gabriel-Buenaventura
,
A.
, and
Azzopardi
,
B.
,
2015
, “
Energy Recovery Systems for Retrofitting in Internal Combustion Engine Vehicles: A Review of Techniques
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
955
964
.10.1016/j.rser.2014.08.083
18.
Dunne
,
J. F.
, and
Ponce Cuspinera
,
L. A.
,
2015
, “
Optimal Gear Ratio Planning for Flywheel-Based Kinetic Energy Recovery Systems in Motor Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
7
), p.
071012
.10.1115/1.4029929
19.
Dynkin
,
E. B.
, and
Yushkevich
,
A. A.
,
1969
,
Markov Processes: Theorems and Problems
,
Plenum Press
,
New York
.
20.
Serfozo
,
R.
,
2009
,
Basics of Applied Stochastic Processes
,
Springer,
Berlin,
pp.
1
235
.
21.
Gagniuc
,
P. A.
,
2017
,
Markov Chains: From Theory to Implementation and Experimentation
,
Springer Science & Business Media
,
Berlin
.
22.
Filev
,
D. P.
, and
Kolmanovsky
,
I.
,
2010
, “
A Generalized Markov Chain Modeling Approach for on Board Applications
,”
International Joint Conference on Neural Networks
(
IJCNN
), Barcelona, Spain, July 8–23, pp.
1
8
.10.1109/IJCNN.2010.5596713
23.
Filev
,
D. P.
, and
Kolmanovsky
,
I.
,
2014
, “
Generalized Markov Models for Real-Time Modeling of Continuous Systems
,”
IEEE Trans. Fuzzy Syst.
,
22
(
4
), pp.
983
998
.10.1109/TFUZZ.2013.2279535
24.
Moura
,
S. J.
,
Fathy
,
H. K.
,
Callaway
,
D. S.
, and
Stein
,
J. L.
,
2011
, “
A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
545
555
.10.1109/TCST.2010.2043736
25.
Ripaccioli
,
G.
,
Bernardini
,
D.
,
Di Cairano
,
S.
,
Bemporad
,
A.
, and
Kolmanovsky
,
I. V.
,
2010
, “
A Stochastic Model Predictive Control Approach for Series Hybrid Electric Vehicle Power Management
,”
American Control Conference
, Baltimore, MD, June 30–July 2, pp.
5844
5849
.10.1109/ACC.2010.5530504
You do not currently have access to this content.