Abstract

Many methods have been proposed to identify servo system parameters. However, problems still remain in widely applied offline identification methods, for example, the describing-function-based relay feedback method has the ineradicable approximation error, and acceleration information is indispensable for the least-squares method. In order to identify systems accurately and efficiently with less servo system information, this article proposes a novel method to identify servo system parameters through curve fitting to the phase-plane trajectory under the help of one optimization method. Specifically, the phase-plane trajectory expression of the single-degree-of-freedom system is derived; the process on how to convert the servo system identification problem to a curve-fitting optimization problem is described in detail; and the guidelines of the initial parameter setting are introduced. Simulations and experiments are carried out to verify the efficiency of the proposed method. Finally, a feed-forward control based on the identified parameters is designed to further validate the identification accuracy.

References

1.
Wu
,
J.
,
Liu
,
J.
,
Xiong
,
Z.
, and
Ding
,
H.
,
2011
, “
A Relay-Based Method for Servo Performance Improvement
,”
Mechatronics
,
21
(
6
), pp.
1076
1086
.10.1016/j.mechatronics.2011.06.001
2.
Chen
,
Q.
,
Tao
,
L.
,
Nan
,
Y.
, and
Ren
,
X.
,
2016
, “
Adaptive Nonlinear Sliding Mode Control of Mechanical Servo System with LuGre Friction Compensation
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
2
), p.
021003
.10.1115/1.4032068
3.
Tao
,
L.
,
Chen
,
Q.
,
Luo
,
Y.
, and
Nan
,
Y.
,
2017
, “
Adaptive Parameter Identification and Control for Servo System with Input Saturation
,” 2017 Ninth International Conference on Modelling, Identification and Control (
ICMIC
), Kunming, China, July 10–12, pp.
652
657
.10.1109/ICMIC.2017.8321536
4.
Wu
,
J.
,
Han
,
Y.
,
Xiong
,
Z.
, and
Ding
,
H.
,
2017
, “
Servo Performance Improvement through Iterative Tuning Feedforward Controller with Disturbance Compensator
,”
Int. J. Mach. Tools Manuf.
,
117
, pp.
1
10
.10.1016/j.ijmachtools.2017.02.002
5.
Chen
,
W.-H.
,
Yang
,
J.
,
Guo
,
L.
, and
Li
,
S.
,
2016
, “
Disturbance-Observer-Based Control and Related Methods—An Overview
,”
IEEE Trans. Ind. Electron.
,
63
(
2
), pp.
1083
1095
.10.1109/TIE.2015.2478397
6.
Paleologu
,
C.
,
Benesty
,
J.
, and
Ciochina
,
S.
,
2008
, “
A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification
,”
IEEE Signal Process. Lett.
,
15
, pp.
597
600
.10.1109/LSP.2008.2001559
7.
Zhou
,
Y.
,
Han
,
A.
,
Yan
,
S.
, and
Chen
,
X.
,
2006
, “
A Fast Method for Online Closed-Loop System Identification
,”
Int. J. Adv. Manuf. Technol.
,
31
(
1–2
), pp.
78
84
.10.1007/s00170-005-0168-9
8.
Lo
,
K.
, and
Kimura
,
H.
,
2003
, “
Recursive Estimation Methods for Discrete Systems
,”
IEEE Trans. Autom. Control
,
48
(
11
), pp.
2019
2024
.10.1109/TAC.2003.819292
9.
Annus
,
P.
,
Land
,
R.
,
Min
,
M.
, and
Ojarand
,
J.
,
2012
, “
Simple Signals for System Identification
,”
Fourier Transform
,
Salih
,
S. M.
, ed.,
IntechOpen
,
Rijeka
, Croatia, p.
11
.
10.
Hsia
,
T.
,
1977
,
System Identification: Least-Squares Methods
,
Lexington Books
,
Lexington
.
11.
Chen
,
S.
,
Billings
,
S. A.
, and
Luo
,
W.
,
1989
, “
Orthogonal Least Squares Methods and Their Application to Non-Linear System Identification
,”
Int. J. Control
,
50
(
5
), pp.
1873
1896
.10.1080/00207178908953472
12.
Dai
,
H.
, and
Sinha
,
N. K.
,
1991
, “
A Robust Off-Line Method for System Identification: Robust Iterative Least Squares Method with Modified Residuals
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
4
), pp.
597
603
.10.1115/1.2896463
13.
Åström
,
K.
, and
Hägglund
,
T.
,
1984
, “
Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins
,”
Automatica
,
20
(
5
), pp.
645
651
.10.1016/0005-1098(84)90014-1
14.
Tan
,
K. K.
,
Dou
,
H.
,
Chen
,
Y.
, and
Lee
,
T. H.
,
2001
, “
High Precision Linear Motor Control via Relay-Tuning and Iterative Learning Based on Zero-Phase Filtering
,”
IEEE Trans. Control Syst. Technol.
,
9
(
2
), pp.
244
253
.10.1109/87.911376
15.
Åström
,
K.
,
Lee
,
T.
,
Tan
,
K.
, and
Johansson
,
K.
,
1995
, “
Recent Advances in Relay Feedback Methods-A Survey
,”
IEEE
International Conference on Systems, Man and Cybernetics, Intelligent Systems for the 21st Century
, Vancouver, BC, Canada, Oct. 22–25, pp.
2616
2621
.10.1109/ICSMC.1995.538177
16.
Liu
,
J.
,
Wu
,
J.
,
Xiong
,
Z.
, and
Zhu
,
X.
,
2012
, “
Servo System Identification Using Relay Feedback: A Time-Domain Approach
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061012
.10.1115/1.4007715
17.
Liu
,
C.
,
Liu
,
J.
,
Wu
,
J.-H.
,
Wang
,
H.
, and
Xiong
,
Z.
,
2013
, “
A Relay Shaping Method for Servo Mechanical System Identification
,”
Intelligent Robotics and Applications
,
J.
Lee
,
M. C.
Lee
,
H.
Liu
, and
J.-H.
Ryu
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
353
364
.
18.
Pu
,
D.
,
Wu
,
J.
,
Xiong
,
Z.
,
Sheng
,
X.
, and
Ding
,
H.
,
2010
, “
Nonlinear Analysis and Parameters Identification of Servo Mechanism with Relay Feedback
,”
Assem. Autom.
,
30
(
3
), pp.
221
227
.10.1108/01445151011061118
19.
Tan
,
K. K.
,
Lee
,
T.
,
Huang
,
S.
, and
Jiang
,
X.
,
2001
, “
Friction Modeling and Adaptive Compensation Using a Relay Feedback Approach
,”
IEEE Trans. Ind. Electron.
,
48
(
1
), pp.
169
176
.10.1109/41.904577
20.
Chen
,
S.-L.
,
Tan
,
K. K.
, and
Huang
,
S.
,
2009
, “
Friction Modeling and Compensation of Servomechanical Systems with Dual-Relay Feedback Approach
,”
IEEE Trans. Control Syst. Technol.
,
17
(
6
), pp.
1295
1305
.10.1109/TCST.2008.2006905
21.
Shen
,
S.-H.
,
Yu
,
H.-D.
, and
Yu
,
C.-C.
,
1996
, “
Use of Saturation-Relay Feedback for Autotune Identification
,”
Chem. Eng. Sci.
,
51
(
8
), pp.
1187
1198
.10.1016/0009-2509(95)00371-1
22.
Shen
,
S.-H.
,
Wu
,
J.-S.
, and
Yu
,
C.-C.
,
1996
, “
Use of Biased-Relay Feedback for System Identification
,”
AIChE J.
,
42
(
4
), pp.
1174
1180
.10.1002/aic.690420431
23.
Olsson
,
H.
, and
Åström
,
K.
,
2001
, “
Friction Generated Limit Cycles
,”
IEEE Trans. Control Syst. Technol.
,
9
(
4
), pp.
629
636
.10.1109/87.930974
24.
Wang
,
Q.-G.
,
Hang
,
C.-C.
, and
Zou
,
B.
,
1997
, “
Low-Order Modeling from Relay Feedback
,”
Ind. Eng. Chem. Res.
,
36
(
2
),
375
381
.10.1021/ie960412
25.
Chen
,
S.-L.
,
Tan
,
K.
, and
Huang
,
S.
,
2012
, “
Identification of Coulomb Friction-Impeded Systems with a Triple-Relay Feedback Apparatus
,”
IEEE Trans. Control Syst. Technol.
,
20
(
05
), pp.
1
12
.10.1109/TCST.2011.2143413
26.
Liu
,
C.
,
Wu
,
J.
,
Liu
,
J.
, and
Xiong
,
Z.
,
2014
, “
High Acceleration Motion Control Based on a Time-Domain Identification Method and the Disturbance Observer
,”
Mechatronics
,
24
(
6
), pp.
672
678
.10.1016/j.mechatronics.2014.01.001
27.
Wang
,
X.
, and
Wang
,
S.
,
2012
, “
High Performance Adaptive Control of Mechanical Servo System with LuGre Friction Model: Identification and Compensation
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
1
), p.
011021
.10.1115/1.4004785
28.
Piatkowski
,
T.
,
2014
, “
Dahl and Lugre Dynamic Friction Models—The Analysis of Selected Properties
,”
Mech. Mach. Theory
,
73
, pp.
91
100
.10.1016/j.mechmachtheory.2013.10.009
29.
Yousefi
,
H.
,
Handroos
,
H.
, and
Soleymani
,
A.
,
2008
, “
Application of Differential Evolution in System Identification of a Servo-Hydraulic System with a Flexible Load
,”
Mechatronics
,
18
(
9
), pp.
513
528
.10.1016/j.mechatronics.2008.03.005
30.
Forst
,
W.
, and
Hoffmann
,
D.
, eds.,
2010
,
Optimization—Theory and Practice
,
Springer
,
New York
.
31.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
, eds.
2012
,
Introduction to Linear Regression
,
John Wiley & Sons, Inc
.,
Hoboken, NJ
.
You do not currently have access to this content.