Abstract

Redundancy is a useful feature in dynamic systems which can be exploited to enhance performance in various tasks. In this work, redundancy will be utilized to minimize the energy consumption of a linear manipulator, while in some cases an additional task of end-effector tracking will also be required and achieved. Optimal control theory has been extensively used for the optimization of dynamic systems; however, complex tasks and redundancy make these problems computationally expensive, numerically difficult to solve, and in many cases, ill-defined. In this paper, evolutionary bilevel optimization for the problem is presented. This is done by setting up an upper level optimization problem for a set of decision variables and a lower level one that actually calculates the optimal inputs and trajectories. The upper level problem is solved by a genetic algorithm (GA), whereas the lower level problem uses classical optimal control. As a result, the proposed algorithm allows the optimization of complex tasks that usually cannot be solved in practice using standard optimal control tools. In addition, despite the use of penalty functions to enforce saturation constraints, the algorithm leads to global energy minimization. Illustrative examples of a redundant x-y robotic manipulator with complex overall tasks will be presented, solved, and discussed.

References

1.
Larkworthy
,
T.
, and
Hayes
,
G.
,
2009
, “
Utilizing Redundancy in Modular Robots to Achieve Greater Accuracy
,”
International Conference on Robot Communication and Coordination
, Odense, Denmark, Mar. 31–Apr. 2, pp.
1
6
.10.4108/ICST.ROBOCOMM2009.5819
2.
Bowling
,
A.
, and
Harmeyer
,
S.
,
2010
, “
Repeatable Redundant Manipulator Control Using Nullspace Quasivelocities
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
3
), p.
031007
.10.1115/1.4001334
3.
De Luca
,
A.
, and
Ferrajoli
,
L.
,
2008
, “
Exploiting Robot Redundancy in Collision Detection and Reaction
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
, Sept. 22–26, pp.
3299
3305
.10.1109/IROS.2008.4651204
4.
Caccavale
,
F.
,
Chiaverini
,
S.
, and
Siciliano
,
B.
,
1997
, “
Second-Order Kinematic Control of Robot Manipulators With Jacobian Damped Least-Squares Inverse: Theory and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
2
(
3
), pp.
188
194
.10.1109/3516.622971
5.
Nguyen
,
L. A.
,
Walker
,
I. D.
, and
de Figueiredo
,
R. J. P.
,
1995
, “
Robustness Issues for Kinematically Redundant Manipulator Control
,”
IEEE Trans. Syst., Man Cybern.
,.
25
(
6
), pp.
1010
1016
.10.1109/21.384266
6.
Galicki
,
M.
,
2000
, “
Time-Optimal Controls of Kinematically Redundant Manipulators With Geometric Constraints
,”
IEEE Trans. Rob. Autom.
,
16
(
1
), pp.
89
93
.10.1109/70.833194
7.
Ma
,
S.
, and
Watanabe
,
M.
,
2004
, “
Time Optimal Path-Tracking Control of Kinematically Redundant Manipulators
,”
JSME Int. J., Ser. C
,
47
(
2
), pp.
582
590
.10.1299/jsmec.47.582
8.
Fahham
,
H. R.
,
Farid
,
M.
, and
Khooron
,
M.
,
2011
, “
Time Optimal Trajectory Tracking of Redundant Planar Cable-Suspended Robots Considering Both Tension and Velocity Constraints
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
1
), p.
011004
.10.1115/1.4002712
9.
Ma
,
S.
,
1994
, “
Local Torque Optimization of Redundant Manipulators in Torque-Based Formulation
,”
IEEE International Conference on Industrial Electronics
,
Control and Instrumentation
, Vol.
2
,
Bologna, Italy
, Sept. 5–9, pp.
697
702
.10.1109/IECON.1994.397869
10.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
, and
Li
,
T.
,
2009
, “
Dynamics and Control of a Planar 3-DOF Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
.10.1016/j.mechmachtheory.2008.04.002
11.
Deo
,
A. S.
, and
Walker
,
I. D.
,
1997
, “
Minimum Effort Inverse Kinematics for Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
767
775
.10.1109/70.631238
12.
Zhang
,
Y.
, and
Ma
,
S.
,
2007
, “
Minimum-Energy Redundancy Resolution of Robot Manipulators Unified by Quadratic Programming and Its Online Solution
,”
IEEE International Conference on Mechatronics and Automation
(
ICMA
), Harbin, China, Aug. 5–8, pp.
3232
3237
.10.1109/ICMA.2007.4304079
13.
Martin
,
D. P.
,
Baillieul
,
J.
, and
Hollerbach
,
J. M.
,
1989
, “
Resolution of Kinematic Redundancy Using Optimization Techniques
,”
IEEE Trans. Rob. Autom.
,
5
(
4
), pp.
529
533
.10.1109/70.88067
14.
Hirakawa
,
A. R.
, and
Kawamura
,
A.
,
1996
, “
Proposal of Trajectory Generation for Redundant Manipulators Using Variational Approach and the Application to Consumed Electrical Energy Minimization
,”
IEEE Proceedings of Advanced Motion Control
,
Mie, Japan
, Mar. 18–21, pp.
687
692
.
15.
Wu
,
J.
,
Zhang
,
B.
, and
Wang
,
L.
,
2016
, “
Optimum Design and Performance Comparison of a Redundantly Actuated Solar Tracker and Its Nonredundant Counterpart
,”
Sol. Energy
,
127
, pp.
36
47
.10.1016/j.solener.2016.01.017
16.
Hirakawa
,
A. R.
, and
Kawamura
,
A.
,
1997
, “
Trajectory Planning of Redundant Manipulators for Minimum Energy Consumption Without Matrix Inversion
,”
International Conference on Robotics and Automation
, Vol.
3
,
Albuquerque, NM
, Apr. 20–25, pp.
2415
2420
.10.1109/ROBOT.1997.619323
17.
Al Khudir
,
K.
, and
De Luca
,
A.
,
2018
, “
Faster Motion on Cartesian Paths Exploiting Robot Redundancy at the Acceleration Level
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3553
3560
.10.1109/LRA.2018.2853806
18.
Halevi
,
Y.
,
Carpanzano
,
A.
, and
Montalbano
,
G.
,
2014
, “
Minimum Energy Control of Redundant Linear Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
5
), p.
51016
.10.1115/1.4027419
19.
Halevi
,
Y.
,
Carpanzano
,
A.
,
Montalbano
,
G.
, and
Koren
,
Y.
,
2011
, “
Minimum Energy Control of Redundant Actuation Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
433
436
.10.1016/j.cirp.2011.03.032
20.
Alpert
,
L.
, and
Halevi
,
Y.
,
2014
, “
Minimum Energy Control of Redundant Manipulators With Axes Coupling and Compounded Path
,”
ASME Paper No. ESDA2014-20171
.10.1115/ESDA2014-20171
21.
Bard
,
J. F.
,
1998
,
Practical Bi-Level Optimization: Algorithms and Applications (Nonconvex Optimization and Its Applications, Vol. 30)
,
Springer
,
Dordrecht, The Netherlands
.
22.
Eiben
,
A. E.
, and
Smith
,
J. E.
,
2003
,
Introduction to Evolutionary Computing
, Vol.
53
,
Springer
,
Berlin, Germany
23.
Malhotra
,
R.
,
Singh
,
N.
, and
Singh
,
Y.
,
2011
, “
Genetic Algorithms: Concepts, Design for Optimization of Process Controllers
,”
Comput. Inf. Sci.
,
4
(
2
), pp.
39
54
.10.5539/cis.v4n2p39
24.
Whitley
,
D.
,
1993
, “
An Executable Model of a Simple Genetic Algorithm
,”
Foundations of Genetic Algorithms
, Vol.
2
,
Elsevier
,
Morgan Kaufmann, San Mateo, CA
, pp.
45
62
.
25.
Simon
,
D.
,
2013
,
Evolutionary Optimization Algorithms
,
Wiley
, Hoboken, NJ.
26.
Chuang
,
Y. C.
,
Chen
,
C. T.
, and
Hwang
,
C.
,
2015
, “
A Real-Coded Genetic Algorithm With a Direction-Based Crossover Operator
,”
Inf. Sci.
,
305
, pp.
320
348
.10.1016/j.ins.2015.01.026
27.
Hartl
,
R. F.
,
Sethi
,
S. P.
, and
Vickson
,
R. G.
,
1995
, “
A Survey of the Maximum Principles for Optimal Control Problems With State Constraints
,”
SIAM Rev.
,
37
(
2
), pp.
181
218
.10.1137/1037043
28.
Garey
,
M. R.
, and
Johnson
,
D. S.
,
1979
, Comput. Intractability: A Guide to Theory NP-Completeness, W.H. Freeman, New York.
29.
Vicente
,
L.
,
Savard
,
G.
, and
Judice
,
J.
,
1994
, “
Descent Approaches for Quadratic Bi-Level Programming I
,”
J. Optim. Theory Appl
,
81
(
2
), pp.
379
399
.10.1007/BF02191670
30.
Oduguwa
,
V.
, and
Roy
,
R.
,
2002
, “
Bi-Level Optimisation Using Genetic Algorithm
,”
IEEE
International Conference on Artificial Intelligence Systems
, Divnomorskoe, Russia, Sept. 5–10, pp.
322
327
.10.1109/ICAIS.2002.1048121
31.
Bryson
,
A. E.
, and
Ho
,
Y. C.
,
1975
,
Applied Optimal Control
,
Wiley
, New York.
32.
Suryan
,
V.
,
Sinha
,
A.
,
Malo
,
P.
, and
Deb
,
K.
,
2016
, “
Handling Inverse Optimal Control Problems Using Evolutionary Bi-Level Optimization
,”
IEEE Congress on Evolutionary Computation
(
CEC
), Vancouver, BC, Canada, July 24–29, pp.
1893
1900
.10.1109/CEC.2016.7744019
33.
Zagorianos
,
A.
,
Kontoyannis
,
E.
, and
Tzafestas
,
S.
,
1994
, “
Resolved Motion Model Based Predictive Control of Redundant Robots
,”
Math. Comput. Simul.
,
37
(
2–3
), pp.
195
205
.10.1016/0378-4754(94)90018-3
You do not currently have access to this content.