Abstract

Articulating landing gear that use closed-loop feedback control are proven to expand the landing capabilities of rotorcraft on sloped and rough terrain. These systems are commonly referred to as robotic landing gear (RLG). Modern RLG systems have limitations for landing on dynamic platforms because their controllers do not incorporate fuselage roll and roll rate feedback. This work presents a proven crashworthy cable-driven RLG system for the commercial S-100 Camcopter that expands static landing zone limits by a factor of three and enables dynamic platform landings in rough sea state (SS) conditions. A new roll and foot-force feedback fused control algorithm is developed to enable ship deck landings of an RLG equipped S-100 without the need for deck lock or advanced vision-based landing systems. Multibody dynamic simulations of the aircraft, landing gear, and new control system show the benefits of this combined roll and force feedback approach. Results include experimental dynamic landings on platforms rolling under sinusoidal motion and simulated SS conditions. The experiments demonstrate, in a limited fashion, the usability of the RLG through ground experimentation, and the results are compared to simulations. Additional simulations of landings of the S-100 with rigid and active landing gear with more challenging landing conditions than experimentally tested are presented. Such results aid in understanding how RLG with this new roll and contact force fused controller prevent dynamic rollover.

References

1.
FAA,
2012
, “
Advanced Landing Maneuvers
,”
Helicopter Flying Handbook
,
Federal Aviation Administration
, Washington, DC, pp.
10.7
10.9
.
2.
Fang
,
R.
, and
Finlay
,
B.
,
1992
, “
Determination of Limitations for Helicopter Ship-Borne Operations
,”
Aircraft Ship Operations
,
Advisory Group for Aerospace Research and Development (AGARD)
,
Amsterdam, The Netherlands
, pp.
18.1
19.14
.
3.
Ibrahim
,
R. A.
, and
Grace
,
I. M.
,
2010
, “
Modeling of Ship Roll Dynamics and Its Coupling With Heave and Pitch
,”
Math. Probl. Eng.
,
2010
, pp.
1
32
.10.1155/2010/934714
4.
Moon
,
J.
,
Domercant
,
J.
, and
Mavris
,
D.
,
2015
, “
A Simplified Approach to Assessment of Mission Success for Helicopter Landing on a Ship
,”
Int. J. Control, Autom. Syst.
,
13
(
3
), pp.
680
688
.10.1007/s12555-013-0092-y
5.
Forrest
,
J.
,
Owen
,
I.
,
Padfield
,
G.
, and
Hodge
,
S.
,
2012
, “
Ship-Helicopter Operating Limits Prediction Using Piloted Flight Simulation and Time-Accurate Airwakes
,”
J. Aircr.
,
49
(
4
), pp.
1020
1031
.10.2514/1.C031525
6.
2001
, “
Helicopter Operations in the Maritime Environment
,”
Aircr. Eng. Aerosp. Technol.
,
73
(
4
), pp.
2037
2049
.10.1108/aeat.2001.12773dac.001
7.
Varol
,
A. E.
, and
Gunal
,
M. M.
,
2015
, “
Simulating Prevention Operations at Sea Against Maritime Piracy
,”
J. Oper. Res. Soc.
,
66
(
12
), pp.
2037
2049
.10.1057/jors.2015.34
8.
2010
, “
Maritime Force Cornerstone of Relief Operations in Haiti, Navy Says
,”
Sea Technol.
,
51
(
3
), p.
53
.
9.
Schiebel,
2019
, “
Camcopter S-100 UAV
,” Schiebel, Vienna, Austria, accessed Apr. 19, 2019, https://www.airforce-technology.com/projects/camcopters-100uav/
10.
Barge Master,
2014
, “
Launching of the Motion Compensated Helideck
,” Barge Master, Rotterdam, The Netherlands, accessed Apr. 19, 2019, https://www.barge-master.com/item/launching-of-the-motion-compensated-helideck/
11.
Reber
,
E. A.
, and
Bernard
,
B. J.
,
2012
, “
The Sea of Simulation: Improving Naval Shiphandling Training and Readiness Through Game-Based Learning
,” Naval Postgraduate School, Monterey, CA, Technical Report No.
ADA561764
.https://apps.dtic.mil/sti/pdfs/ADA561764.pdf
12.
Xu
,
G.
,
Zhang
,
Y.
,
Ji
,
S.
,
Cheng
,
Y.
, and
Tian
,
Y.
,
2009
, “
Research on Computer Vision-Based for UAV Autonomous Landing on a Ship
,”
Pattern Recognit. Lett.
,
30
(
6
), pp.
600
605
.10.1016/j.patrec.2008.12.011
13.
Saripalli
,
S.
,
Montgomery
,
J.
, and
Sukhatme
,
G.
,
2003
, “
Visually Guided Landing of an Unmanned Aerial Vehicle
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
371
380
.10.1109/TRA.2003.810239
14.
Polvara
,
R.
,
Sharma
,
S.
,
Wan
,
J.
,
Manning
,
A.
, and
Sutton
,
R.
,
2019
, “
Autonomous Vehicular Landings on the Deck of an Unmanned Surface Vehicle Using Deep Reinforcement Learning
,”
Robotica
,
37
(
11
), pp.
1867
1882
.10.1017/S0263574719000316
15.
Voskuijl
,
M.
,
Padfield
,
G.
,
Walker
,
D.
,
Manimala
,
B.
, and
Gubbels
,
A.
,
2010
, “
Simulation of Automatic Helicopter Deck Landings Using Nature Inspired Flight Control
,”
Aeronaut. J.
,
114
(
1151
), pp.
25
34
.10.1017/S000192400000350X
16.
Sandino
,
L. A.
,
Bejar
,
M.
, and
Ollero
,
A.
,
2011
, “
On the Applicability of Linear Control Techniques for Autonomous Landing of Helicopters on the Deck of a Ship
,”
2011 IEEE International Conference on Mechatronics
, IEEE, Istanbul, Turkey, Apr. 13–15,
pp.
363
368
.10.1109/ICMECH.2011.5971312
17.
Horn
,
J. F.
,
He
,
C.
,
Roark
,
S.
,
Yang
,
J.
,
Tritschler
,
J.
,
Gonzalez
,
G.
, and
Lee
,
D.
,
2016
, “
Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
,” Office of Naval Research, University Park, PA, Technical Report No. AD1013549.
18.
Tan
,
C. K.
,
Wang
,
J.
,
Paw
,
Y. C.
, and
Liao
,
F.
,
2016
, “
Autonomous Ship Deck Landing of a Quadrotor Using Invariant Ellipsoid Method
,”
IEEE Trans. Aerosp. Electron. Syst.
,
52
(
2
), pp.
891
903
.10.1109/TAES.2015.140850
19.
Raibert
,
M. H.
,
1986
, “
Legged Robots
,”
Commun. ACM
,
29
(
6
), pp.
499
514
.10.1145/5948.5950
20.
Buehler
,
M.
,
Playter
,
R.
, and
Raibert
,
M.
,
2005
, “
Robots Step Outside
,”
International Symposium on Adaptive Motion of Animals and Machines
(
AMAM
), Ilmenau, Germany, pp.
1
4
.https://www.researchgate.net/publication/280776075_Robots_Step_Outside
21.
Ahmadi
,
M.
,
Michalska
,
H.
, and
Buehler
,
M.
,
2007
, “
Control and Stability Analysis of Limit Cycles in a Hopping Robot
,”
IEEE Trans. Rob.
,
23
(
3
), pp.
553
563
.10.1109/TRO.2007.898956
22.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
Bigdog, the Rough-Terrain Quadruped Robot
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
10822
10825
.10.3182/20080706-5-KR-1001.01833
23.
Manivannan
,
V.
,
Langley
,
J. P.
,
Costello
,
M.
, and
Ruzzene
,
M.
,
2013
, “
Rotorcraft Slope Landings With Articulated Landing Gear
,”
AIAA
Paper No. 2013-5160. 10.2514/6.2013-5160
24.
Sikorsky
,
I. I.
,
1953
, “
Landing Gear for Use on Inclined Surfaces
,” U.S. Patent No. US2630989A.
25.
Mason
,
S.
,
1974
, “
Helicopter Self-Leveling Landing Gear
,” U.S. Patent No. US3857533A.
26.
Kiefer
,
J.
,
Ward
,
M.
, and
Costello
,
M.
,
2016
, “
Rotorcraft Hard Landing Mitigation Using Robotic Landing Gear
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
3
), p.
031003
.10.1115/1.4032286
27.
DARPA
,
2015
, “
Robotic Landing Gear Could Enable Future Helicopters to Take Off and Land Almost Anywhere
,” Defense Advanced Research Projects Agency (DARPA), Arlington, VA, accessed Apr. 19, 2019, https://www.darpa.mil/news-events/2015-09-10
28.
Di Leo
,
C. V.
,
Leon
,
B.
,
Wachlin
,
J.
,
Kurien
,
M.
,
Rimoli
,
J. J.
, and
Costello
,
M.
,
2018
, “
Cable-Driven Four-Bar Link Robotic Landing Gear Mechanism: Rapid Design and Survivability Testing
,”
AIAA
Paper No. 2018-0491.10.1115/2018-0491
29.
Di Leo
,
C. V.
,
León
,
B.
,
Wachlin
,
J.
,
Kurien
,
M.
,
Krishnan
,
A.
,
Krishnan
,
A.
,
Rimoli
,
J. J.
, and
Costello
,
M.
,
2020
, “
Design of a Crashworthy Cable-Driven Four-Bar Link Robotic Landing Gear System
,”
J. Aircr.
,
57
(
2
), pp.
224
244
.10.2514/1.C035386
30.
León
,
B.
,
Rimoli
,
J.
, and
Leo
,
C. V. D.
,
2019
, “
Ground and Flight Tests of a Cable-Driven Four-Bar Linkage Robotic Landing Gear for Rotorcraft
,”
Vertical Flight Society 75th Annual Forum & Technology Display
, Philadelphia, PA, May 13–16, Paper No. 0294.
31.
Stolz
,
B.
,
Brödermann
,
T.
,
Castiello
,
E.
,
Engelberger
,
G.
,
Erne
,
D.
,
Gasser
,
J.
,
Hayoz
,
E.
,
Müller
,
S.
,
Mühlebach
,
L.
,
Löw
,
T.
,
Scheuer
,
D.
,
Vandeventer
,
L.
,
Bjelonic
,
M.
,
Günther
,
F.
,
Kolvenbach
,
H.
,
Höpflinger
,
M.
, and
Hutter
,
M.
,
2018
, “
An Adaptive Landing Gear for Extending the Operational Range of Helicopters
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018)
, Madrid, Spain, Oct. 1–5, pp.
1757
1763
.10.1109/IROS.2018.8594062
32.
Huang
,
M.
,
Nie
,
H.
,
Zhang
,
M.
,
Wei
,
X.
, and
Yue
,
S.
,
2016
, “
Design of Mission Adaptive Landing Gear for Near Space Travel Lander
,”
J. Vibroeng.
,
18
(
8
), pp.
4949
4963
.10.21595/jve.2016.17078
33.
Kim
,
D.
, and
Costello
,
M.
,
2016
, “
Virtual Model Control of Rotorcraft With Articulated Landing Gear for Shipboard Landing
,”
AIAA
Paper No. 2016-1863.10.1115/2016-1863
34.
Stengel
,
R. F.
,
1994
,
Optimal Control and Estimation
(Dover Books on Advanced Mathematics),
Dover Publications
,
New York
.
35.
Barnes
,
D.
,
2015
, “
USS Curtis Wilbur (DDG 54) Crosses Into 2016
,” Navy Live, East China Sea, At Sea, accessed July 28, 2021, https://www.dvidshub.net/image/1026948/uss-curtis-wilbur-transits-east-china-sea
36.
León
,
B.
,
Rimoli
,
J.
, and
Di Leo
,
C. V.
,
2019
, “
Elastomer Encapsulated Pressure Sensor With Engineered Air Cavity for Force Sensing
,”
IEEE Sens. J.
,
19
(
16
), pp.
6628
6643
.10.1109/JSEN.2019.2912515
37.
Smith
,
J. O.
,
2008
, “
The Simplest Low-Pass Filter
,”
Introduction to Digital Filters: With Audio Applications
,
W3K Publishing
, Stanford, CA, pp.
1
25
.
38.
Leylek
,
E.
,
Ward
,
M.
, and
Costello
,
M.
,
2012
, “
Flight Dynamic Simulation for Multibody Aircraft Configurations
,”
J. Guid., Control, Dyn.
,
35
(
6
), pp.
1828
1842
.10.2514/1.55858
39.
Gross
,
M.
,
Costello
,
M.
, and
Fresconi
,
F.
,
2013
, “
Impact Point Model Predictive Control of a Spin-Stabilized Projectile With Instability Protection
,”
AIAA
Paper No. 2013-4509.10.1115/2013-4509
40.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2011
, “
The Analysis of the Impact Response of a Thin Plate Via Fractional Derivative Standard Linear Solid Model
,”
J. Sound Vib.
,
330
(
9
), pp.
1985
2003
.10.1016/j.jsv.2010.11.010
41.
Carbone
,
G.
, and
Putignano
,
C.
,
2013
, “
A Novel Methodology to Predict Sliding and Rolling Friction of Viscoelastic Materials: Theory and Experiments
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1822
1834
.10.1016/j.jmps.2013.03.005
42.
Goraj
,
Z. J.
, and
Cichocka
,
E.
,
2016
, “
Influence of Weak and Strong Gyroscopic Effects on Light Aircraft Dynamics
,”
Aircr. Eng. Aerosp. Technol.
,
88
(
5
), pp.
613
622
.10.1108/AEAT-03-2015-0076
43.
Kendoul
,
F.
,
Fantoni
,
I.
, and
Lozano
,
R.
,
2006
, “
Modeling and Control of a Small Autonomous Aircraft Having Two Tilting Rotors
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1297
1302
.10.1109/TRO.2006.882956
44.
Rothhaar
,
P. M.
,
Murphy
,
P. C.
,
Bacon
,
B. J.
,
Gregory
,
I. M.
,
Grauer
,
J. A.
,
Busan
,
R. C.
, and
Croom
,
M. A.
,
2014
, “
NASA Langley Distributed Propulsion VTOL Tiltwing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development
,”
AIAA
Paper No. 2014-2999. 10.2514/6.2014-2999
45.
Syms
,
G.
, and
Zan
,
S. J.
,
1994
, “
Analysis of Rotor Forces in a Ship Airwake
,” Institute for Aerospace Research, National Research Council of Canada, Ottawa, ON, Canada, Technical Report No.
ADA640406
.https://apps.dtic.mil/sti/citations/ADA640406
46.
Snyder
,
M.
,
Kang
,
H.
,
Brownell
,
C.
, and
Burks
,
J.
,
2013
, “
Validation of Ship Air Wake Simulations and Investigation of Ship Air Wake Impact on Rotary Wing Aircraft
,”
Nav. Eng. J.
,
125
(
1
), pp.
69
79
.https://www.usna.edu/MechEngDept/_files/documents/brownell_files/NEJ%202013.pdf
47.
Conrad
,
R. E.
,
2005
, “
SMP95: Standard Ship Motion Program User Manual
,” Ship Hydromechanics Department, Naval Surface Warfare Center: Carderock Division, West Bethesda, MD, Technical Report No. NSWCCD-50-TR-2005/074.
48.
Meyers
,
W. G.
,
Benne
,
C.
, and
Applebee
,
T.
,
1993
, “
Users Manual for the Simulation Time History and Access Time History Programs
,” Ship Hydromechanics Department, Naval Surface Warfare Center: Carderock Division, Bethesda, MD, Technical Report No. ADM000225.
49.
Kinsman
,
B.
,
1965
,
Wind Waves: Their Generation and Propagation on the Ocean Surface
,
Prentice-Hall
, Englewood Cliffs, NJ.
50.
Bales
,
S.
,
1982
, “
Designing Ships to the Natural Environment
,” Association of Scientists and Engineers, Washington, DC, Technical Report No. ADA114147.
51.
Sarnicola Simulation Systems, Inc.,
2007
, “
Hexad
,” Sarnicola Simulation Systems, Inc., Conklin, NY, accessed Apr. 19, 2019, https://sarnicola.com/hexad3000 h.html
You do not currently have access to this content.