Abstract

This paper concerns the design and rigorous in silico evaluation of a closed-loop hemorrhage resuscitation algorithm with blood pressure (BP) as controlled variable. A lumped-parameter control design model relating volume resuscitation input to blood volume (BV) and BP responses was developed and experimentally validated. Then, three alternative adaptive control algorithms were developed using the control design model: (i) model reference adaptive control (MRAC) with BP feedback, (ii) composite adaptive control (CAC) with BP feedback, and (iii) CAC with BV and BP feedback. To the best of our knowledge, this is the first work to demonstrate model-based control design for hemorrhage resuscitation with readily available BP as feedback. The efficacy of these closed-loop control algorithms was comparatively evaluated as well as compared with an empiric expert knowledge-based algorithm based on 100 realistic virtual patients created using a well-established physiological model of cardiovascular (CV) hemodynamics. The in silico evaluation results suggested that the adaptive control algorithms outperformed the knowledge-based algorithm in terms of both accuracy and robustness in BP set point tracking: the average median performance error (MDPE) and median absolute performance error (MDAPE) were significantly smaller by >99% and >91%, and as well, their interindividual variability was significantly smaller by >88% and >94%. Pending in vivo evaluation, model-based control design may advance the medical autonomy in closed-loop hemorrhage resuscitation.

References

1.
Kauvar
,
D. S.
,
Lefering
,
R.
, and
Wade
,
C. E.
,
2006
, “
Impact of Hemorrhage on Trauma Outcome: An Overview of Epidemiology, Clinical Presentations, and Therapeutic Considerations
,”
J. Trauma: Inj., Infect., Crit. Care
,
60
(
6
), pp.
S3
S11
.10.1097/01.ta.0000199961.02677.19
2.
Eastridge
,
B. J.
,
Holcomb
,
J. B.
, and
Shackelford
,
S.
,
2019
, “
Outcomes of Traumatic Hemorrhagic Shock and the Epidemiology of Preventable Death From Injury
,”
Transfusion
,
59
(
S2
), pp.
1423
1428
.10.1111/trf.15161
3.
Alarhayem
,
A. Q.
,
Myers
,
J. G.
,
Dent
,
D.
,
Liao
,
L.
,
Muir
,
M.
,
Mueller
,
D.
,
Nicholson
,
S.
,
2016
, “
Time Is the Enemy: Mortality in Trauma Patients With Hemorrhage From Torso Injury Occurs Long Before the ‘Golden Hour’
,”
Am. J. Surg.
,
212
(
6
), pp.
1101
1105
.10.1016/j.amjsurg.2016.08.018
4.
Rossaint
,
R.
,
Bouillon
,
B.
,
Cerny
,
V.
,
Coats
,
T. J.
,
Duranteau
,
J.
,
Fernández-Mondéjar
,
E.
,
Filipescu
,
D.
,
2016
, “
The European Guideline on Management of Major Bleeding and Coagulopathy Following Trauma: Fourth Edition
,”
Crit. Care
,
20
(
1
), p.
100
.10.1186/s13054-016-1265-x
5.
Bendjelid
,
K.
, and
Romand
,
J.-A.
,
2003
, “
Fluid Responsiveness in Mechanically Ventilated Patients: A Review of Indices Used in Intensive Care
,”
Intensive Care Med.
,
29
(
3
), pp.
352
360
.10.1007/s00134-002-1615-9
6.
Rinehart
,
J.
,
Alexander
,
B.
,
Manach
,
Y.
,
Hofer
,
C.
,
Tavernier
,
B.
,
Kain
,
Z. N.
, and
Cannesson
,
M.
,
2011
, “
Evaluation of a Novel Closed-Loop Fluid-Administration System Based on Dynamic Predictors of Fluid Responsiveness: An In-Silico Simulation Study
,”
Crit. Care
,
15
(
6
), p.
R278
.10.1186/cc10562
7.
Le Manach
,
Y.
,
Hofer
,
C. K.
,
Lehot
,
J.-J.
,
Vallet
,
B.
,
Goarin
,
J.-P.
,
Tavernier
,
B.
, and
Cannesson
,
M.
,
2012
, “
Can Changes in Arterial Pressure Be Used to Detect Changes in Cardiac Output During Volume Expansion in the Perioperative Period?
,”
Anesthesiology
,
117
(
6
), pp.
1165
1174
.10.1097/ALN.0b013e318275561d
8.
De Backer
,
D.
, and
Pinsky
,
M. R.
,
2007
, “
Can One Predict Fluid Responsiveness in Spontaneously Breathing Patients?
,”
Intensive Care Med.
,
33
(
7
), pp.
1111
1113
.10.1007/s00134-007-0645-8
9.
Ramsingh
,
D.
,
Alexander
,
B.
, and
Cannesson
,
M.
,
2012
, “
Clinical Review: Does It Matter Which Hemodynamic Monitoring System Is Used?
,”
Crit. Care
,
17
(
2
), p.
208
.10.1186/cc11814
10.
Marik
,
P. E.
,
Baram
,
M.
, and
Vahid
,
B.
,
2008
, “
Does Central Venous Pressure Predict Fluid Responsiveness? A Systematic Review of the Literature and the Tale of Seven Mares
,”
Chest
,
134
(
1
), pp.
172
178
.10.1378/chest.07-2331
11.
Qureshi
,
A. I.
,
Tariq
,
N.
,
Divani
,
A. A.
,
Novitzke
,
J.
,
Hussein
,
H. H.
,
Palesch
,
Y. Y.
,
Martin
,
R.
,
2010
, “
Antihypertensive Treatment of Acute Cerebral Hemorrhage
,”
Crit. Care Med.
,
38
(
2
), pp.
637
648
.10.1097/CCM.0b013e3181b9e1a5
12.
Anderson
,
C. S.
,
Heeley
,
E.
,
Huang
,
Y.
,
Wang
,
J.
,
Stapf
,
C.
,
Delcourt
,
C.
,
Lindley
,
R.
,
2013
, “
Rapid Blood-Pressure Lowering in Patients With Acute Intracerebral Hemorrhage
,”
N. Engl. J. Med.
,
368
(
25
), pp.
2355
2365
.10.1056/NEJMoa1214609
13.
Hawryluk
,
G.
,
Whetstone
,
W.
,
Saigal
,
R.
,
Ferguson
,
A.
,
Talbott
,
J.
,
Bresnahan
,
J.
,
Dhall
,
S.
,
Pan
,
J.
,
Beattie
,
M.
, and
Manley
,
G.
,
2015
, “
Mean Arterial Blood Pressure Correlates With Neurological Recovery After Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data
,”
J. Neurotrauma
,
32
(
24
), pp.
1958
1967
.10.1089/neu.2014.3778
14.
Madigan
,
M. C.
,
Kemp
,
C. D.
,
Johnson
,
J. C.
, and
Cotton
,
B. A.
,
2008
, “
Secondary Abdominal Compartment Syndrome After Severe Extremity Injury: Are Early, Aggressive Fluid Resuscitation Strategies to Blame?
,”
J. Trauma: Inj., Infect., Crit. Care
,
64
(
2
), pp.
280
285
.10.1097/TA.0b013e3181622bb6
15.
Hutchings
,
S. D.
,
Naumann
,
D. N.
,
Watts
,
S.
,
Wilson
,
C.
,
Burton
,
C.
,
Wendon
,
J.
, and
Kirkman
,
E.
,
2016
, “
Microcirculatory Perfusion Shows Wide Inter-Individual Variation and Is Important in Determining Shock Reversal During Resuscitation in a Porcine Experimental Model of Complex Traumatic Hemorrhagic Shock
,”
ICMx
,
4
(
1
), p.
17
.10.1186/s40635-016-0088-z
16.
Rafie
,
A. D.
,
Rath
,
P. A.
,
Michell
,
M. W.
,
Kirschner
,
R. A.
,
Deyo
,
D. J.
,
Prough
,
D. S.
,
Grady
,
J. J.
, and
Kramer
,
G. C.
,
2004
, “
Hypotensive Resuscitation of Multiple Hemorrhages Using Crystalloid and Colloids
,”
Shock
,
22
(
3
), pp.
262
269
.10.1097/01.shk.0000135255.59817.8c
17.
Rinehart
,
J.
,
Le Manach
,
Y.
,
Douiri
,
H.
,
Lee
,
C.
,
Lilot
,
M.
,
Le
,
K.
,
Canales
,
C.
, and
Cannesson
,
M.
,
2014
, “
First Closed-Loop Goal Directed Fluid Therapy During Surgery: A Pilot Study
,”
Ann. Fr. Anesth. Réanim.
,
33
(
3
), pp.
e35
e41
.10.1016/j.annfar.2013.11.016
18.
Rinehart
,
J.
,
Lee
,
C.
,
Canales
,
C.
,
Kong
,
A.
,
Kain
,
Z.
, and
Cannesson
,
M.
,
2013
, “
Closed-Loop Fluid Administration Compared to Anesthesiologist Management for Hemodynamic Optimization and Resuscitation During Surgery: An In-Vivo Study
,”
Anesth. Analg.
,
117
(
5
), pp.
1119
1129
.10.1213/ANE.0b013e3182937d61
19.
Chaisson
,
N. F.
,
Kirschner
,
R. A.
,
Deyo
,
D. J.
,
Lopez
,
J. A.
,
Prough
,
D. S.
, and
Kramer
,
G. C.
,
2003
, “
Near-Infrared Spectroscopy-Guided Closed-Loop Resuscitation of Hemorrhage
,”
J. Trauma
,
54
(
5 Suppl
.), pp.
S183
S192
.10.1097/01.TA.0000064508.11512.28
20.
Rinehart
,
J.
,
Lilot
,
M.
,
Lee
,
C.
,
Joosten
,
A.
,
Huynh
,
T.
,
Canales
,
C.
,
Imagawa
,
D.
,
Demirjian
,
A.
, and
Cannesson
,
M.
,
2015
, “
Closed-Loop Assisted Versus Manual Goal-Directed Fluid Therapy During High-Risk Abdominal Surgery: A Case-Control Study With Propensity Matching
,”
Crit. Care
,
19
(
1
), p.
94
.10.1186/s13054-015-0827-7
21.
Marques
,
N. R.
,
Ford
,
B. J.
,
Khan
,
M. N.
,
Kinsky
,
M.
,
Deyo
,
D. J.
,
Mileski
,
W. J.
,
Ying
,
H.
, and
Kramer
,
G. C.
,
2017
, “
Automated Closed-Loop Resuscitation of Multiple Hemorrhages: A Comparison Between Fuzzy Logic and Decision Table Controllers in a Sheep Model
,”
Disaster Mil. Med.
,
3
(
1
), p.
1
.10.1186/s40696-016-0029-0
22.
Kramer
,
G. C.
,
Kinsky
,
M. P.
,
Prough
,
D. S.
,
Salinas
,
J.
,
Sondeen
,
J. L.
,
Hazel-Scerbo
,
M. L.
, and
Mitchell
,
C. E.
,
2008
, “
Closed-Loop Control of Fluid Therapy for Treatment of Hypovolemia
,”
J. Trauma: Inj., Infect., Crit. Care
,
64
(
4
), pp.
S333
S341
.10.1097/TA.0b013e31816bf517
23.
Libert
,
N.
,
Chenegros
,
G.
,
Harrois
,
A.
,
Baudry
,
N.
,
Cordurie
,
G.
,
Benosman
,
R.
,
Vicaut
,
E.
, and
Duranteau
,
J.
,
2018
, “
Performance of Closed-Loop Resuscitation of Hemorrhagic Shock With Fluid Alone or in Combination With Norepinephrine: An Experimental Study
,”
Ann. Intensive Care
,
8
(
1
), p.
89
.10.1186/s13613-018-0436-0
24.
Bighamian
,
R.
,
Kim
,
C.-S.
,
Reisner
,
A. T.
, and
Hahn
,
J.-O.
,
2016
, “
Closed-Loop Fluid Resuscitation Control Via Blood Volume Estimation
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
11
), p.
111005
.10.1115/1.4033833
25.
Tatara
,
T.
, and
Tashiro
,
C.
,
2007
, “
Quantitative Analysis of Fluid Balance During Abdominal Surgery
,”
Anesth. Analg.
,
104
(
2
), pp.
347
354
.10.1213/01.ane.0000253031.70916.27
26.
Tatara
,
T.
,
Tsunetoh
,
T.
, and
Tashiro
,
C.
,
2007
, “
Crystalloid Infusion Rate During Fluid Resuscitation From Acute Hemorrhage
,”
Br. J. Anaesth.
,
99
(
2
), pp.
212
217
.10.1093/bja/aem165
27.
Carlson
,
D. E.
,
Kligman
,
M. D.
, and
Gann
,
D. S.
,
1996
, “
Impairment of Blood Volume Restitution After Large Hemorrhage: A Mathematical Model
,”
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
270
(
5
), pp.
R1163
R1177
.10.1152/ajpregu.1996.270.5.R1163
28.
Gyenge
,
C. C.
,
Bowen
,
B. D.
,
Reed
,
R. K.
, and
Bert
,
J. L.
,
2003
, “
Preliminary Model of Fluid and Solute Distribution and Transport During Hemorrhage
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
823
839
.10.1114/1.1581878
29.
Arturson
,
G.
,
Groth
,
T.
,
Hedlund
,
A.
, and
Zaar
,
B.
,
1989
, “
Computer Simulation of Fluid Resuscitation in Trauma. First Pragmatic Validation in Thermal Injury
,”
J. Burn Care Rehabil.
,
10
(
4
), pp.
292
299
.10.1097/00004630-198907000-00002
30.
Cervera
,
A. L.
, and
Moss
,
G.
,
1974
, “
Crystalloid Distribution Following Hemorrhage and Hemodilution: Mathematical Model and Prediction of Optimum Volumes for Equilibration at Normovolemia
,”
J. Trauma Acute Care Surg.
,
14
(
6
), pp.
506
520
.10.1097/00005373-197406000-00007
31.
Pirkle
,
J. C.
, and
Gann
,
D.
,
1975
, “
Restitution of Blood Volume After Hemorrhage: Mathematical Description
,”
Am. J. Physiol.: Legacy Content
,
228
(
3
), pp.
821
827
.10.1152/ajplegacy.1975.228.3.821
32.
Hedlund
,
A.
,
Zaar
,
B.
,
Groth
,
T.
, and
Arturson
,
G.
,
1988
, “
Computer Simulation of Fluid Resuscitation in Trauma. I. Description of an Extensive Pathophysiological Model and Its First Validation
,”
Comput. Methods Programs Biomed.
,
27
(
1
), pp.
7
21
.10.1016/0169-2607(88)90099-5
33.
Kofránek
,
J.
, and
Rusz
,
J.
,
2010
, “
Restoration of Guyton's Diagram for Regulation of the Circulation as a Basis for Quantitative Physiological Model Development
,”
Physiol. Res.
,
59
(
6
), pp.
897
908
.10.33549/physiolres.931838
34.
Pirkle
,
J. C.
,
1976
, “
Mathematical Model of Blood Volume Control After Hemorrhage: Implication for Intravenous Fluid Therapy
,”
Proceedings of the 1976 Summer Computer Simulation Conference,
Washington, DC, July 12, pp.
482
485
.
35.
Bighamian
,
R.
,
Reisner
,
A. T.
, and
Hahn
,
J.-O.
,
2016
, “
A Lumped-Parameter Subject-Specific Model of Blood Volume Response to Fluid Infusion
,”
Front. Physiol.
,
7
, p.
390
.10.3389/fphys.2016.00390
36.
Tivay
,
A.
,
Jin
,
X.
,
Lo
,
A. K.-Y.
,
Scully
,
C. G.
, and
Hahn
,
J.-O.
,
2020
, “
Practical Use of Regularization in Individualizing a Mathematical Model of Cardiovascular Hemodynamics Using Scarce Data
,”
Front. Physiol.
,
11
, p.
452
.10.3389/fphys.2020.00452
37.
Bighamian
,
R.
,
Parvinian
,
B.
,
Scully
,
C. G.
,
Kramer
,
G.
, and
Hahn
,
J.-O.
,
2018
, “
Control-Oriented Physiological Modeling of Hemodynamic Responses to Blood Volume Perturbation
,”
Control Eng. Pract.
,
73
, pp.
149
160
.10.1016/j.conengprac.2018.01.008
38.
Guyton
,
A. C.
,
Taylor
,
A. E.
, and
Granger
,
H. J.
,
1975
,
Circulatory Physiology II: Dynamics and Control of the Body Fluids
,
Saunders
,
Philadelphia, PA
.
39.
Guyton
,
A. C.
,
1981
, “
The Relationship of Cardiac Output and Arterial Pressure Control
,”
Circulation
,
64
(
6
), pp.
1079
1088
.10.1161/01.CIR.64.6.1079
40.
Costanzo
,
L. S.
,
2018
,
Physiology
,
Elsevier
,
Philadelphia, PA
.
41.
Causey
,
M. W.
,
Miller
,
S.
,
Foster
,
A.
,
Beekley
,
A.
,
Zenger
,
D.
, and
Martin
,
M.
,
2011
, “
Validation of Noninvasive Hemoglobin Measurements Using the Masimo Radical-7 SpHb Station
,”
Am. J. Surg.
,
201
(
5
), pp.
592
598
.10.1016/j.amjsurg.2011.01.020
42.
Ewaldsson
,
C.-A.
, and
Hahn
,
R. G.
,
2005
, “
Kinetics and Extravascular Retention of Acetated Ringer's Solution During Isoflurane or Propofol Anesthesia for Thyroid Surgery
,”
Anesthesiology
,
103
(
3
), pp.
460
469
.10.1097/00000542-200509000-00006
43.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
Prentice Hall
, Upper Saddle River, NJ.
44.
Ioannou
,
P. A.
, and
Sun
,
J.
,
2012
,
Robust Adaptive Control
,
Dover Publications
,
Mineola, NY
.
45.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
46.
Guyton
,
A. C.
,
1980
,
Arterial Pressure and Hypertension
,
Saunders
,
Philadelphia, PA
.
47.
Vaid
,
S.
,
Shah
,
A.
,
Michell
,
M.
,
Rafie
,
A.
,
Deyo
,
D.
,
Prough
,
D.
, and
Kramer
,
G.
,
2006
, “
Normotensive and Hypotensive Closed-Loop Resuscitation Using 3.0% NaCl to Treat Multiple Hemorrhages in Sheep
,”
Crit. Care Med.
,
34
(
4
), pp.
1185
1192
.10.1097/01.CCM.0000207341.78696.3A
48.
Varvel
,
J. R.
,
Donoho
,
D. L.
, and
Shafer
,
S. L.
,
1992
, “
Measuring the Predictive Performance of Computer-Controlled Infusion Pumps
,”
J. Pharmacokinet. Biopharm.
,
20
(
1
), pp.
63
94
.10.1007/BF01143186
You do not currently have access to this content.