Abstract

Floating offshore wind turbines (FOWTs) are subject to undesirable platform motion and a significant increases in fatigue loads compared to their onshore counterparts. We have recently proposed using the fishing line artificial muscle (FLAM) actuators to realize active mooring line force control (AMLFC) for platform stabilization and thus load reduction, which features a compact design and no need for turbine redesign. However, as for the thermally activated FLAM actuators, a major control challenge lies in the asymmetric dynamics for the heating and the cooling half cycle of operation. In this paper, for a tension-leg platform (TLP) based FOWT with FLAM actuator based AMLFC, a hybrid dynamic model is obtained with platform pitch and roll degrees-of-freedom included. Then a hybrid model predictive control (HMPC) strategy is proposed for platform motion stabilization, with preview information on incoming wind and wave. A move blocking scheme is used to achieve reasonable computational efficiency. Fatigue, aerodynamics, structures, and turbulence (FAST) based simulation study is performed using the National Renewable Energy Laboratory (NREL) 5 MW wind turbine model. Under different combinations of wind speed, wave height and wind directions, simulation results show that the proposed control strategy can significantly reduce the platform roll and tower-base side-to-side bending moment, with a mild level of actuator power consumption.

References

1.
Lee
,
J.
, and
Zhao
,
F.
,
2020
,
Global Wind Report 2019
,
Global Wind Energy Council
,
Brussels, Belgium
.
2.
Richard
,
C.
,
2019
, “Global Offshore Wind Fleet to Grow 15-Fold by 2040,”
Wind Power Monthly
, accessed Jan. 21, 2022, https://www.windpowermonthly.com/article/1663624/global-offshore-wind-fleet-grow-15-fold-2040
3.
Thiagarajan
,
K. P.
, and
Dagher
,
H. J.
,
2014
, “
A Review of Floating Platform Concepts for Offshore Wind Energy Generation
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p.
020903
.10.1115/1.4026607
4.
Robertson
,
A. N.
, and
Jonkman
,
J. M.
,
2011
, “
Loads Analysis of Several Offshore Floating Wind Turbine Concepts
,”
21st International Offshore & Polar Engineer Conference
, Maui, HI, June 19–24, Paper No. NREL/CP-5000-50539.https://www.nrel.gov/docs/fy12osti/50539.pdf
5.
Larsen
,
T. J.
, and
Hanson
,
T. D.
,
2007
, “
A Method to Avoid Negative Damped Low Frequent Tower Vibrations for a Floating, Pitch Controlled Wind Turbine
,”
J. Phys. Conf. Ser.
,
75
, p.
012073
.10.1088/1742-6596/75/1/012073
6.
Namik
,
H.
, and
Stol
,
K.
,
2010
, “
Individual Blade Pitch Control of Floating Offshore Wind Turbines
,”
Wind Energy
,
13
(
1
), pp.
74
85
.10.1002/we.332
7.
Ueno
,
K.
,
Yamada
,
M.
,
Haneda
,
K.
,
Chujo
,
T.
, and
Ohtsuka
,
T.
,
2018
, “
Nonlinear Model Predictive Control for Suppressing Variations of Blade Bending Stress in Floating Offshore Wind Turbines Affected by Strong Winds
,”
Trans. Soc. Inst. Ctrl. Eng.
,
54
(
2
), pp.
156
166
.10.9746/sicetr.54.156
8.
Moness
,
M.
, and
Moustafa
,
A. M.
,
2020
, “
Hybrid Modelling and Predictive Control of Utility-Scale Variable-Speed Variable-Pitch Wind Turbines
,”
Trans. Inst. Meas. Ctrl
, 42(9), pp.
1724
1739
.
9.
Tofighi
,
E. M.
,
2018
, Robust Nonlinear Model Predictive Control of Wind Turbines using Uncertain Wind Predictions, Ph.D. dissertation,
University of Newcastle Australia
, Callaghan, Australia.
10.
Morsi
,
A.
,
Abbas
,
H. S.
, and
Mohamed
,
A. M.
,
2017
, “
Wind Turbine Control Based on a Modified Model Predictive Control Scheme for Linear Parameter-Varying Systems
,”
IET Ctrl. Theory Appl.
,
11
(
17
), pp.
3056
3068
.10.1049/iet-cta.2017.0426
11.
Goupee
,
A. J.
,
Kimball
,
R. W.
, and
Dagher
,
H. J.
,
2017
, “
Experimental Observations of Active Blade Pitch and Generator Control Influence on Floating Wind Turbine Response
,”
Renewable Energy
,
104
, pp.
9
19
.10.1016/j.renene.2016.11.062
12.
Skaare
,
B.
,
Nielsen
,
F. G.
,
Hanson
,
T. D.
,
Yttervik
,
R.
,
Havmoller
,
O.
, and
Rekdal
,
A.
,
2015
, “
Analysis of Measurements and Simulations From the Hywind Demo Floating Wind Turbine
,”
Wind Energy
,
18
(
6
), pp.
1105
1122
.10.1002/we.1750
13.
Lee
,
H. H.
,
Wong
,
S.-H.
, and
Lee
,
R.-S.
,
2006
, “
Response Mitigation on the Offshore Floating Platform System With Tuned Liquid Column Damper
,”
Ocean Eng.
,
33
(
8–9
), pp.
1118
1142
.10.1016/j.oceaneng.2005.06.008
14.
Jaksic
,
V.
,
Wright
,
C. S.
,
Murphy
,
J.
,
Afeef
,
C.
,
Ali
,
S. F.
,
Mandic
,
D. P.
, and
Pakrashi
,
V.
,
2015
, “
Dynamic Response Mitigation of Floating Wind Turbine Platforms Using Tuned Liquid Column Dampers
,”
Phil. Trans. R. Soc. A Math., Phys. Eng. Sci.
,
373
(
2035
), p.
20140079
.10.1098/rsta.2014.0079
15.
Buckley
,
T.
,
Watson
,
P.
,
Cahill
,
P.
,
Jaksic
,
V.
, and
Pakrashi
,
V.
,
2018
, “
Mitigating the Structural Vibrations of Wind Turbines Using Tuned Liquid Column Damper Considering Soil-Structure Interaction
,”
Renewable Energy
,
120
, pp.
322
341
.10.1016/j.renene.2017.12.090
16.
Lackner
,
M. A.
, and
Rotea
,
M. A.
,
2011
, “
Passive Structural Control of Onshore Wind Turbines
,”
Wind Energy
,
14
(
3
), pp.
373
388
.10.1002/we.426
17.
Lackner
,
M. A.
, and
Rotea
,
M. A.
,
2011
, “
Structural Control of Floating Wind Turbines
,”
Mechatronics
,
21
(
4
), pp.
704
719
.10.1016/j.mechatronics.2010.11.007
18.
Brodersen
,
M. L.
,
Bjørke
,
A. S.
, and
Høgsberg
,
J.
,
2017
, “
Active Tuned Mass Damper for Damping of Offshore Wind Turbine Vibrations
,”
Wind Energy
,
20
(
5
), pp.
783
796
.10.1002/we.2063
19.
Si
,
Y.
,
Karimi
,
H. R.
, and
Gao
,
H.
,
2013
, “
Modeling and Parameter Analysis of the OC3-Hywind Floating Wind Turbine With a Tuned Mass Damper in Nacelle
,”
J. Appl. Math
,
2013
, pp.
1
10
.10.1155/2013/679071
20.
Si
,
Y.
,
Karimi
,
H. R.
, and
Gao
,
H.
,
2014
, “
Modelling and Optimization of a Passive Structural Control Design for a Spar-Type Floating Wind Turbine
,”
J. Eng. Struct.
,
69
, pp.
168
182
.10.1016/j.engstruct.2014.03.011
21.
Dinh
,
V.
, and
Basu
,
B.
,
2015
, “
Passive Control of Floating Offshore Wind Turbine Nacelle and Spar Vibrations by Multiple Tuned Mass Dampers
,”
J. Struct. Control Health Monit.
,
22
(
1
), pp.
152
176
.10.1002/stc.1666
22.
Yang
,
Z.
, and
Li
,
Y.
,
2018
, “
Active Vertical Vane Control for Stabilizing Platform Roll Motion of Floating Offshore Turbines
,”
Wind Energy
,
21
(
11
), pp.
997
1010
.10.1002/we.2209
23.
Jalili
,
K.
,
Li
,
Y.
, and
Rotea
,
M. A.
,
2014
, “
Pitch and Roll Motion Control of a Floating Wind Turbine With Hybrid Actuation
,”
ASME
Paper No. DSCC2014-6064.10.1115/DSCC2014-6064
24.
Li
,
Y.
, and
Wu
,
Z.
,
2016
, “
Stabilization of Floating Offshore Wind Turbines by Artificial Muscle Based Active Mooring Line Force Control
,”
Proceedings of American Control Conference
, Boston, MA, July 6–8, pp.
2277
2282
.10.1109/ACC.2016.7525257
25.
Wu
,
Z.
, and
Li
,
Y.
,
2020
, “
Platform Stabilization of Floating Offshore Wind Turbines by Artificial Muscle Based Active Mooring Line Force Control
,”
IEEE/ASME Trans. Mechatronics
,
25
(
6
), pp.
2765
2776
.10.1109/TMECH.2020.2992711
26.
Haines
,
C. S.
,
Lima
,
M. D.
,
Li
,
N.
,
Spinks
,
G. M.
,
Foroughi
,
J.
,
Madden
,
J. D. W.
,
Kim
,
S.-H.
,
Fang
,
S.
,
de Andrade
,
M. J.
,
Göktepe
,
F.
,
Göktepe
,
Ö.
,
Mirvakili
,
S. M.
,
Naficy
,
S.
,
Lepró
,
X.
,
Oh
,
J.-Y.
,
Kozlov
,
M. E.
,
Kim
,
S.-J.
,
Xu
,
X.
,
Swedlove
,
B. J.
,
Wallace
,
G. G.
, and
Baughman
,
R. H.
, Feb.
2014
, “
Artificial Muscles From Fishing Line and Sewing Thread
,”
Science
,
343
(
6173
), pp.
868
872
.10.1126/science.1246906
27.
Yip
,
M. C.
, and
Niemeyer
,
G.
,
2015
, “
High-Performance Robotic Muscles From Conductive Nylon Sewing Thread
,”
IEEE International Conference Robotics & Auto
, May 26–30, Seattle, WA, pp.
2313
2318
.10.1109/ICRA.2015.7139506
28.
Yin
,
H.
,
Tian
,
L.
, and
Yang
,
G.
,
2020
, “
Design of Fiber Array Muscle for Soft Finger With Variable Stiffness Based on Nylon and Shape Memory Alloy
,”
Adv. Rob.
,
34
(
9
), pp.
599
511
.10.1080/01691864.2020.1738272
29.
Almubarak
,
Y.
, and
Tadesse
,
Y.
,
2017
, “
Twisted and Coiled Polymer (TCP) Muscles Embedded in Silicone Elastomer for Use in Soft Robot
,”
Int. J. Intel. Rob. App
,
1
(
3
), pp.
352
368
.10.1007/s41315-017-0022-x
30.
Bahrami
,
S.
, and
Dumond
,
P.
,
2018
, “
Testing of Coiled Nylon Actuators for Use in Spastic Hand Exoskeletons
,”
Proceedings of Annual International Conference IEEE Engineering in Medicine & Biology Society
, Honolulu, HI, July 18–21, pp.
1853
1856
.10.1109/EMBC.2018.8512596
31.
Tahara
,
K.
,
Hayashi
,
R.
,
Masuya
,
K.
,
Takagi
,
K.
,
Irisawa
,
T.
,
Yamauchi
,
T.
, and
Tanaka
,
E.
, July
2019
, “
Rotational Angle Control of a Twisted Polymeric Fiber Actuator by an Estimated Temperature Feedback
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2447
2454
.10.1109/LRA.2019.2901982
32.
Kim
,
K.
,
Cho
,
K.-H.
,
Jung
,
H.-S.
,
Yang
,
S.-Y.
,
Kim
,
Y.
,
Park
,
J.-H.
,
Jang
,
H.
,
Nam
,
J.-D.
,
Koo
,
J.-C.
,
Moon
,
H.
,
Suk
,
J.-W.
,
Rodrigue
,
H.
, and
Choi
,
H.-R.
,
2018
, “
Double Helix Twisted and Coiled Soft Actuator From Spandex and Nylon
,”
Adv. Eng. Mater.
,
20
(
11
), p.
1800536
.10.1002/adem.201800536
33.
Wei
,
T.
, and
Liu
,
Z.
,
2019
, “
Damping Multimode Switching Control of Semiactive Suspension for Vibration Reduction in a Wheel Loader
,”
Shock Vib.
,
2019
, pp.
1
11
.10.1155/2019/4535072
34.
Giorgetti
,
N.
,
Bemporad
,
A.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2006
, “
Hybrid Model Predictive Control Application Towards Optimal Semi-Active Suspension
,”
Int. J. Ctrl.
,
79
(
5
), pp.
521
533
.10.1080/00207170600593901
35.
Xiong
,
Q.
,
Li
,
X.
,
Martin
,
D.
,
Guo
,
S.
, and
Zuo
,
L.
,
2018
, “
Semi-Active Control for Two-Body Ocean Wave Energy Converter by Using Hybrid Model Predictive Control
,”
ASME
Paper No. DSCC2018-9157.10.1115/DSCC2018-9157
36.
Merat
,
K.
,
Chekan
,
J. A.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2017
, “
Online Hybrid Model Predictive Controller Design for Cruise Control of Automobiles
,”
ASME
Paper No. DSCC2017-5274.10.1115/DSCC2017-5274
37.
Chen
,
Y.
,
Deng
,
C.
,
Li
,
D.
, and
Chen
,
M.
,
2020
, “
Quantifying Cumulative Effects of Stochastic Forecast Errors of Renewable Energy Generation on Energy Storage SOC and Application of Hybrid-MPC Approach to Microgrid
,”
Int. J. Elec. Power Energy Syst.
,
117
, p.
105710
.10.1016/j.ijepes.2019.105710
38.
Jiang
,
L.
,
Liu
,
E.
, and
Liu
,
D.
,
2020
, “
A Mode Selected Mixed Logic Dynamic Model and Model Predictive Control of Buck Converter
,”
Complexity
,
2020
, pp.
1
11
.10.1155/2020/5415636
39.
Zhang
,
S.
, and
Madawala
,
U. K.
,
2019
, “
A Hybrid Model Predictive Multilayer Control Strategy for Modular Multilevel Converters
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
7
(
2
), pp.
1002
1014
.10.1109/JESTPE.2019.2903348
40.
Shahsavari
,
B.
,
Bagherieh
,
O.
,
Mehr
,
N.
,
Horowitz
,
R.
, and
Tomlin
,
C.
,
2016
, “
Optimal Mode-Switching and Control Synthesis for Floating Offshore Wind Turbines
,”
American Control Conference
, Boston, MA, July 6–8, pp.
2295
2300
.10.1109/ACC.2016.7525260
41.
Xing
,
X.
,
Meng
,
H.
,
Xie
,
L.
,
Yue
,
L.
, and
Lin
,
Z.
,
2019
, “
Switching Performance Improvement Based on Model-Predictive Control for Wind Turbine Covering the Whole Wind Speed Range
,”
IEEE Trans. Sustainable Energy
,
10
(
1
), pp.
290
300
.10.1109/TSTE.2018.2833634
42.
Moness
,
M.
, and
Moustafa
,
A. M.
,
2020
, “
Hybrid Modelling and Predictive Control of Utility-Scale Variable-Speed Variable-Pitch Wind Turbines
,”
Trans. Inst. Meas. Ctrl.
,
42
(
9
), pp.
1724
1739
.10.1177/0142331219895117
43.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2017
,
Predictive Control for Linear and Hybrid Systems
,
Cambridge University Press
, Cambridge, UK.
44.
Jonkman
,
J. M.
,
2007
, Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, Ph.D. dissertation,
University of Colorado at Boulder
, Canada.
45.
Al-Solihat
,
M. K.
,
Nahon
,
M.
, and
Behdinan
,
K.
,
2019
, “
Dynamic Modeling and Simulation of a Spar Floating Offshore Wind Turbine With Consideration of the Rotor Speed Variations
,”
ASME J. Dyn. Sys., Meas., Control
,
141
(
8
), p.
081014
.10.1115/1.4043104
46.
Bemporad
,
A.
, and
Morari
,
M.
,
1999
, “
Control of Systems Integrating Logic, Dynamics, and Constraints
,”
Automatica
,
35
(
3
), pp.
407
427
.10.1016/S0005-1098(98)00178-2
47.
Torrisi
,
F.
, and
Bemporad
,
A.
,
2004
, “
HYSDEL: A Tool for Generating Computational Hybrid Models
,”
IEEE Trans. Contr. Sys. Tech
,
12
(
2
), pp.
235
249
.10.1109/TCST.2004.824309
48.
IBM, 2018, “ILOG CPLEX Optimization Studio V12.6.3,” IBM, Armonk, NY, accessed May 8, 2019, https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-v1263
49.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2005
,
FAST User's Guide
,
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/EL-500-29798.
50.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
IEEE International Conference Robotics & Automation
, Taipei, Taiwan, Sept. 2–4, pp.
284
289
.10.1109/CACSD.2004.1393890
51.
Maciejowski
,
J. M.
,
2002
,
Predictive Control: With Constraints
,
Pearson Education
, London, UK.
52.
Int. Electrotechnical Commission,
2009
,
Wind Turbines Part 3: Design Requirements for Offshore Wind Turbines
,
International Electrotechnical Commission
, Geneva, Switzerland, Report No. IEC 61400-3 v.1.
53.
Hayman
,
G. J.
, and
Buhl
,
M. J.
,
2012
,
MLife User's Guide for Version 1.00
,
National Renewable Energy Laboratory
,
Golden, CO
.
54.
Matha
,
D.
,
2010
,
Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform With a Comparison to Other Floating Turbine Concepts
,
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/SR-500-45891.
You do not currently have access to this content.