Abstract

Based on the guaranteed cost theory, this paper proposes a robust controller for the automotive electrohydraulic coupling system. However, parameter perturbation caused by the model linearization is a critical challenge for the nonlinear electrohydraulic coupling system. Generally, the electrical brake booster system (E-booster) can be separated into three parts, a permanent magnet synchronous motor (PMSM), a hydraulic model of the master cylinder, and the transmission mechanism. In this paper, the robust guaranteed cost controller (RGCC) is adopted to achieve an accurate regulation of the pushrod position of the E-booster and has strong robustness against internal uncertainties, and the linear extended state observer (LESO) is utilized to optimize E-booster's dynamic performance. Specifically, the tracking differentiator (TD) and LESO are used to improve the dynamic precision and reduce the hysteresis effect. The overshoot is suppressed by TD, and the disturbance caused by nonlinear uncertainty is restrained by LESO. The experimental results show that RGCC sacrifices a 6% phase lag in the low-frequency domain for a 10% and 40% reduction in first and second-order, respectively, compared with the proportion integration differentiation (PID). Results demonstrate that RGCC has higher precision and stronger robustness in dynamic behavior.

References

1.
Yuan
,
Y.
,
Zhang
,
J.
,
Li
,
Y.
, and
Li
,
C.
,
2018
, “
A Novel Regenerative Electrohydraulic Brake System: Development and Hardware-in-Loop Tests
,”
IEEE Trans. Veh. Technol.
,
67
(
12
), pp.
11440
11452
.10.1109/TVT.2018.2872030
2.
Han
,
W.
,
Xiong
,
L.
, and
Yu
,
Z.
,
2019
, “
A Novel Pressure Control Strategy of an Electro-Hydraulic Brake System Via Fusion of Control Signals
,”
Proc. Inst. Mech. Eng., Part D J. Autom. Eng.
,
233
(
13
), pp.
3342
3357
.10.1177/0954407018821016
3.
Zhao
,
J.
,
Chen
,
Z.
,
Zhu
,
B.
, and
Wu
,
J.
,
2020
, “
Precise Active Brake-Pressure Control for a Novel Electro-Booster Brake System
,”
IEEE Trans. Ind. Electron.
,
67
(
6
), pp.
4774
4784
.10.1109/TIE.2019.2924613
4.
Has
,
Z.
,
Rahmat
,
M. F.
,
Husain
,
A. R.
,
Ishaque
,
K.
,
Ghazali
,
R.
,
Ahmad
,
M. N.
,
Sam
,
Y. M.
, and
Rozali
,
S. M.
,
2014
, “
Robust Position Tracking Control of an Electro-Hydraulic Actuator in the Presence of Friction and Internal Leakage
,”
Arab. J. Sci. Eng.
,
39
(
4
), pp.
2965
2978
.10.1007/s13369-013-0888-3
5.
Rahmat
,
M.
,
Husain
,
A.
,
Ishaque
,
K.
,
Sam
,
Y. M.
,
Ghazali
,
R.
, and
Rozali
,
S. M.
,
2011
, “
Modeling and Controller Design of an Industrial Hydraulic Actuator System in the Presence of Friction and Internal Leakage
,”
Int. J. Phys. Sci.
,
6
(
14
), pp.
3502
3517
.10.5897/IJPS11.546
6.
Zhuoping
,
Y.
,
Wei
,
H.
,
Xiong
,
L.
, and Songyun, X.,
2016
, “
Hydraulic Pressure Control System of Integrated-⋅ Electro–Hydraulic Brake System Based on Byrnes-Isidori Normalized Form
,”
Chin. J. Mech. Eng.
,
52
(
22
), pp.
92
100
.
7.
Todeschini
,
F.
,
Corno
,
M.
,
Panzani
,
G.
,
Fiorenti
,
S.
, and
Savaresi
,
S. M.
,
2015
, “
Adaptive Cascade Control of a Brake-by-Wire Actuator for Sport Motorcycles
,”
IEEE/ASME Trans. Mechatronics
,
20
(
3
), pp.
1310
1319
.10.1109/TMECH.2014.2341114
8.
Todeschini
,
F.
,
Formentin
,
S.
,
Panzani
,
G.
,
Corno
,
M.
,
Savaresi
,
S. M.
, and
Zaccarian
,
L.
,
2016
, “
Nonlinear Pressure Control for BBW Systems Via Dead-Zone and Antiwindup Compensation
,”
IEEE Trans. Control Syst. Technol.
,
24
(
4
), pp.
1419
1431
.10.1109/TCST.2015.2483562
9.
Tony Thomas
,
A.
,
Parameshwaran
,
R.
,
Sathiyavathi
,
S.
, and
Vimala Starbino
,
A.
,
2019
, “
Improved Position Tracking Performance of Electro Hydraulic Actuator Using PID and Sliding Mode Controller
,”
IETE J. Res.
, 11(10), pp.
1
13
.10.1080/03772063.2019.1664341
10.
Karpenko
,
M.
, and
Sepehri
,
N.
,
2010
, “
Quantitative Fault Tolerant Control Design for a Leaking Hydraulic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
5
), p. 054505.10.1115/1.4001707
11.
Guan
,
C.
, and
Pan
,
S.
,
2008
, “
Adaptive Sliding Mode Control of Electro-Hydraulic System With Nonlinear Unknown Parameters
,”
Control Eng. Pract.
,
16
(
11
), pp.
1275
1284
.10.1016/j.conengprac.2008.02.002
12.
Guo
,
K.
,
Wei
,
J.
,
Fang
,
J.
,
Feng
,
R.
, and
Wang
,
X.
,
2015
, “
Position Tracking Control of Electro-Hydraulic Single-Rod Actuator Based on an Extended Disturbance Observer
,”
Mechatronics
,
27
, pp.
47
56
.10.1016/j.mechatronics.2015.02.003
13.
Jianyong
,
Y.
,
Zongxia
,
J.
,
Bin
,
Y.
,
Shang
,
Y.
, and
Wenbin
,
D.
,
2012
, “
Nonlinear Adaptive Robust Force Control of Hydraulic Load Simulator
,”
Chin. J. Aeronaut.
,
25
(
5
), pp.
766
775
.10.1016/S1000-9361(11)60443-3
14.
Yao
,
B.
,
Bu
,
F.
,
Reedy
,
J.
, and
Chiu
,
G. T.-C.
,
2000
, “
Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
5
(
1
), p.
79
.10.1109/3516.828592
15.
Milić
,
V.
,
Šitum
,
Ž.
, and
Essert
,
M.
,
2010
, “
Robust H Position Control Synthesis of an Electro-Hydraulic Servo System
,”
ISA Trans.
,
49
(
4
), pp.
535
542
.10.1016/j.isatra.2010.06.004
16.
Jingwei
,
Q.
,
2016
, “
H Tracking Control for Water Level in the u-Tube Steam Generator
,” M.D. thesis, Harbin Engineering University.
17.
Du
,
R.
,
Wu
,
Y.
,
Chen
,
W.
, and
Chen
,
Q.
,
2013
, “
High Accuracy Adaptive Robust Control for Permanent Magnet Synchronous Motor Systems
,”
Inf. Control
,
42
(
1
), p.
20
.
18.
Liu
,
Y.
, and
Li
,
X.-Y.
,
2002
, “
Decentralized Robust Adaptive Control of Nonlinear Systems With Unmodeled Dynamics
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
848
856
.10.1109/TAC.2002.1000285
19.
Khalil
,
H. K.
,
1996
, “
Adaptive Output Feedback Control of Nonlinear Systems Represented by Input-Output Models
,”
IEEE Trans. Autom. Control
,
41
(
2
), pp.
177
188
.10.1109/9.481517
20.
Liu
,
Y.
,
2009
, “
Robust Adaptive Observer for Nonlinear Systems With Unmodeled Dynamics
,”
Automatica
,
45
(
8
), pp.
1891
1895
.10.1016/j.automatica.2009.04.002
21.
Park
,
G.
,
Hwang
,
Y.
, and
Choi
,
S. B.
,
2017
, “
Vehicle Positioning Based on Velocity and Heading Angle Observer Using Low-Cost Sensor Fusion
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
12
).10.1115/1.4036881
22.
Ding
,
X.
,
Shen
,
G.
,
Li
,
X.
, and
Tang
,
Y.
,
2020
, “
Delay Compensation Position Tracking Control of Electro-Hydraulic Servo Systems Based on a Delay Observer
,”
Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng.
,
234
(
5
), pp.
622
633
.10.1177/0959651819871149
23.
Han
,
J.
,
2009
, “
From Pid to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
24.
Yao
,
J.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2014
, “
Extended-State-Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping
,”
IEEE Trans. Ind. Electron.
,
61
(
11
), pp.
6285
6293
.10.1109/TIE.2014.2304912
25.
Oshima
,
T.
,
Fujiki
,
N.
,
Nakao
,
S.
,
Kimura
,
T.
,
Ohtani
,
Y.
, and
Ueno
,
K.
,
2011
, “
Development of an Electrically Driven Intelligent Brake System
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
4
(
1
), pp.
399
405
.10.4271/2011-01-0568
26.
Olsson
,
H.
,
Åström
,
K. J.
,
De Wit
,
C. C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.10.1016/S0947-3580(98)70113-X
27.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
28.
Chang
,
S.
, and
Peng
,
T.
,
1972
, “
Adaptive Guaranteed Cost Control of Systems With Uncertain Parameters
,”
IEEE Trans. Autom. Control
,
17
(
4
), pp.
474
483
.10.1109/TAC.1972.1100037
29.
Yu
,
L.
, and
Chu
,
J.
,
1999
, “
An LMI Approach to Guaranteed Cost Control of Linear Uncertain Time-Delay Systems
,”
Automatica
,
35
(
6
), pp.
1155
1159
.10.1016/S0005-1098(99)00007-2
30.
Moheimani
,
S. R.
, and
Petersen
,
I.
,
1996
, “
Quadratic Guaranteed Cost Control With Robust Pole Placement in a Disk
,”
IEE Proc. Control Theory Appl.
,
143
(
1
), pp.
37
43
.10.1049/ip-cta:19960058
31.
Xie
,
L.
,
1996
, “
Output Feedback H Control of Systems With Parameter Uncertainty
,”
Int. J. Control
,
63
(
4
), pp.
741
750
.10.1080/00207179608921866
32.
Han
,
J.
,
1994
, “
Nonlinear Tracking-Differentiator
,”
J. Syst. Math.
,
14
(
2
), pp.
177
183
.
33.
Gao
,
Z.
,
2006
, “
Scaling and Bandwidth-Parameterization Based Controller Tuning
,”
Proceedings of the American Control Conference
, Vol.
6
, Denver, CO, June 4–6, pp.
4989
4996
.10.1109/ACC.2003.1242516
You do not currently have access to this content.