Abstract

In recent years, three-dimensional (3D) construction printing has emerged as a viable alternative to conventional construction methods. Particularly promising for large scale construction are collective printing systems consisting of multiple mobile 3D printers. However, the design of these systems typically relies on the assumption of continuous communication between the printers, which is unrealistic in dynamically changing construction environments. As a first step toward decentralized collective 3D printing, we explore an active sensing framework allowing individual agents to reconstruct the shape of the structure, toward assessing other agents' progress in the absence of direct communication. In this vein, the shape of the structure is discretized as a 2D lattice embodying its topology, such that the problem is equivalent to the inference of a network. We leverage environmental modifications introduced by each agent through the printing of new layers to track the structure evolution. We demonstrate the validity of a sequential approach based on system identification through numerical simulations. Our work paves the way to decentralized collective 3D construction printing, as well as other applications in collective behavior that rely on the physical medium to transfer information among agents.

References

1.
Hager
,
I.
,
Golonka
,
A.
, and
Putanowicz
,
R.
,
2016
, “
3D Printing of Buildings and Building Components as the Future of Sustainable Construction?
,”
Procedia Eng.
,
151
, pp.
292
299
.10.1016/j.proeng.2016.07.357
2.
Tay
,
Y. W. D.
,
Panda
,
B.
,
Paul
,
S. C.
,
Noor Mohamed
,
N. A.
,
Tan
,
M. J.
, and
Leong
,
K. F.
,
2017
, “
3D Printing Trends in Building and Construction Industry: A Review
,”
Virtual Phys. Prototyping
,
12
(
3
), pp.
261
276
.10.1080/17452759.2017.1326724
3.
Hossain
,
M.
,
Zhumabekova
,
A.
,
Paul
,
S. C.
, and
Kim
,
J. R.
,
2020
, “
A Review of 3D Printing in Construction and Its Impact on the Labor Market
,”
Sustainability
,
12
(
20
), p.
8492
.10.3390/su12208492
4.
Kreiger
,
M. A.
,
MacAllister
,
B. A.
,
Wilhoit
,
J. M.
, and
Case
,
M. P.
,
2015
, “
The Current State of 3D Printing for Use in Construction
,”
The Proceedings of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure
,
Ames, Iowa
, June 2–3, pp.
149
158
.
5.
Pham
,
T. H.
,
Lim
,
J. H.
, and
Pham
,
Q.-C.
,
2016
, “
Robotic 3D-Printing for Building and Construction
,”
Proceedings of the 2nd International Conference on Progress in Additive Manufacturing
(
Pro-AM 2016
), Singapore, May 16–19, pp.
300
305
.https://www.researchgate.net/publication/331087849_Robotic_3DPrinting_for_Building_and_Construction
6.
Pollák
,
M.
,
Török
,
J.
,
Zajac
,
J.
,
Kočiško
,
M.
, and
Telišková
,
M.
,
2018
, “
The Structural Design of 3D Print Head and Execution of Printing Via the Robotic Arm ABB IRB 140
,”
2018 5th International Conference on Industrial Engineering and Applications (ICIEA)
,
IEEE
,
Singapore
, Apr. 26–28, pp.
194
198
.
7.
Wu
,
P.
,
Wang
,
J.
, and
Wang
,
X.
,
2016
, “
A Critical Review of the Use of 3-D Printing in the Construction Industry
,”
Autom. Constr.
,
68
, pp.
21
31
.10.1016/j.autcon.2016.04.005
8.
Al Jassmi
,
H.
,
Al Najjar
,
F.
, and
Mourad
,
A.-H. I.
,
2018
, “
Large-Scale 3D Printing: The Way Forward
,”
IOP Conf. Ser.: Mater. Sci. Eng.,
324,
p.
012088
.10.1088/1757-899X/324/1/012088
9.
Tiryaki
,
M. E.
,
Zhang
,
X.
, and
Pham
,
Q.-C.
,
2019
, “
Printing-While-Moving: A New Paradigm for Large-Scale Robotic 3D Printing
,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
IEEE
,
Macau, China
, Nov. 4–8, pp.
2286
2291
.10.1109/IROS40897.2019.8967524
10.
Zhang
,
X.
,
Li
,
M.
,
Lim
,
J. H.
,
Weng
,
Y.
,
Tay
,
Y. W. D.
,
Pham
,
H.
, and
Pham
,
Q.-C.
,
2018
, “
Large-Scale 3D Printing by a Team of Mobile Robots
,”
Autom. Constr.
,
95
, pp.
98
106
.10.1016/j.autcon.2018.08.004
11.
Shen
,
H.
,
Pan
,
L.
, and
Qian
,
J.
,
2019
, “
Research on Large-Scale Additive Manufacturing Based on Multi-Robot Collaboration Technology
,”
Addit. Manuf.
,
30
, p.
100906
.10.1016/j.addma.2019.100906
12.
Poudel
,
L. P.
,
2021
, “
Computational Frameworks for Multi-Robot Cooperative 3D Printing and Planning
,” Ph.D. thesis,
University of Arkansas
,
Fayetteville, Arkansas
.
13.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, Vol.
6
,
Wiley
,
New York
.
14.
Cao
,
Y.
,
Yu
,
W.
,
Ren
,
W.
, and
Chen
,
G.
,
2013
, “
An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination
,”
IEEE Trans. Ind. Inf.
,
9
(
1
), pp.
427
438
.10.1109/TII.2012.2219061
15.
Morville
,
S.
,
Carin
,
M.
,
Peyre
,
P.
,
Gharbi
,
M.
,
Carron
,
D.
,
Le Masson
,
P.
, and
Fabbro
,
R.
,
2012
, “
2D Longitudinal Modeling of Heat Transfer and Fluid Flow During Multilayered Direct Laser Metal Deposition Process
,”
J. Laser Appl.
,
24
(
3
), p.
032008
.10.2351/1.4726445
16.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2019
, “
Two-Dimensional Modeling and System Identification of the Laser Metal Deposition Process
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
2
), p.
021012
.10.1115/1.4041444
17.
Jin
,
Y.
,
Qin
,
S. J.
, and
Huang
,
Q.
,
2020
, “
Modeling Inter-Layer Interactions for Out-of-Plane Shape Deviation Reduction in Additive Manufacturing
,”
IISE Trans.
,
52
(
7
), pp.
721
731
.10.1080/24725854.2019.1676936
18.
Shandilya
,
S. G.
, and
Timme
,
M.
,
2011
, “
Inferring Network Topology From Complex Dynamics
,”
New J. Phys.
,
13
(
1
), p.
013004
.10.1088/1367-2630/13/1/013004
19.
Nabi-Abdolyousefi
,
M.
, and
Mesbahi
,
M.
,
2012
, “
Network Identification Via Node Knockout
,”
IEEE Trans. Autom. Control
,
57
(
12
), pp.
3214
3219
.10.1109/TAC.2012.2200376
20.
Alderisio
,
F.
,
Fiore
,
G.
, and
Di Bernardo
,
M.
,
2017
, “
Reconstructing the Structure of Directed and Weighted Networks of Nonlinear Oscillators
,”
Phys. Rev. E
,
95
(
4
), p.
042302
.10.1103/PhysRevE.95.042302
21.
van Waarde
,
H. J.
,
Tesi
,
P.
, and
Camlibel
,
M. K.
,
2019
, “
Topology Reconstruction of Dynamical Networks Via Constrained Lyapunov Equations
,”
IEEE Trans. Autom. Control
,
64
(
10
), pp.
4300
4306
.10.1109/TAC.2019.2894585
22.
Coutino
,
M.
,
Isufi
,
E.
,
Maehara
,
T.
, and
Leus
,
G.
,
2020
, “
State-Space Network Topology Identification From Partial Observations
,”
IEEE Trans. Signal Inf. Process. Networks
,
6
, pp.
211
225
.10.1109/TSIPN.2020.2975393
23.
Materassi
,
D.
, and
Salapaka
,
M. V.
,
2012
, “
On the Problem of Reconstructing an Unknown Topology Via Locality Properties of the Wiener Filter
,”
IEEE Trans. Autom. Control
,
57
(
7
), pp.
1765
1777
.10.1109/TAC.2012.2183170
24.
Shahrampour
,
S.
, and
Preciado
,
V. M.
,
2015
, “
Topology Identification of Directed Dynamical Networks Via Power Spectral Analysis
,”
IEEE Trans. Autom. Control
,
60
(
8
), pp.
2260
2265
.10.1109/TAC.2014.2374711
25.
Wu
,
X.
,
Zhao
,
X.
,
,
J.
,
Tang
,
L.
, and
Lu
,
J.
,
2016
, “
Identifying Topologies of Complex Dynamical Networks With Stochastic Perturbations
,”
IEEE Trans. Control Network Syst.
,
3
(
4
), pp.
379
389
.10.1109/TCNS.2015.2482178
26.
Sun
,
J.
, and
Bollt
,
E. M.
,
2014
, “
Causation Entropy Identifies Indirect Influences, Dominance of Neighbors and Anticipatory Couplings
,”
Phys. D: Nonlinear Phenom.
,
267
, pp.
49
57
.10.1016/j.physd.2013.07.001
27.
Porfiri
,
M.
, and
Marín
,
M. R.
,
2018
, “
Information Flow in a Model of Policy Diffusion: An Analytical Study
,”
IEEE Trans. Network Sci. Eng.
,
5
(
1
), pp.
42
54
.10.1109/TNSE.2017.2731212
28.
Novelli
,
L.
,
Atay
,
F. M.
,
Jost
,
J.
, and
Lizier
,
J. T.
,
2020
, “
Deriving Pairwise Transfer Entropy From Network Structure and Motifs
,”
Proc. R. Soc. A
,
476
(
2236
), p.
20190779
.10.1098/rspa.2019.0779
29.
Haehne
,
H.
,
Casadiego
,
J.
,
Peinke
,
J.
, and
Timme
,
M.
,
2019
, “
Detecting Hidden Units and Network Size From Perceptible Dynamics
,”
Phys. Rev. Lett.
,
122
(
15
), p.
158301
.10.1103/PhysRevLett.122.158301
30.
Porfiri
,
M.
,
2020
, “
Validity and Limitations of the Detection Matrix to Determine Hidden Units and Network Size From Perceptible Dynamics
,”
Phys. Rev. Lett.
,
124
(
16
), p.
168301
.10.1103/PhysRevLett.124.168301
31.
Tyloo
,
M.
, and
Delabays
,
R.
,
2021
, “
System Size Identification From Sinusoidal Probing in Diffusive Complex Networks
,”
J. Phys.: Complexity
,
2
(
2
), p.
025016
.10.1088/2632-072X/abebd3
32.
Tang
,
X.
,
Huo
,
W.
,
Yuan
,
Y.
,
Li
,
X.
,
Shi
,
L.
,
Ding
,
H.
, and
Kurths
,
J.
,
2020
, “
Dynamical Network Size Estimation From Local Observations
,”
New J. Phys.
,
22
(
9
), p.
093031
.10.1088/1367-2630/abaf2f
33.
Celli
,
P.
, and
Porfiri
,
M.
,
2022
, “
The Detection Matrix as a Model-Agnostic Tool to Estimate the Number of Degrees of Freedom in Mechanical Systems and Engineering Structures
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
32
(
3
), p.
033106
.10.1063/5.0083767
34.
Rugh
,
W. J.
,
1996
,
Linear System Theory
,
Prentice Hall, Inc.
,
Upper Saddle River, NJ
.
35.
Verhaegen
,
M.
, and
Dewilde
,
P.
,
1992
, “
Subspace Model Identification. Part I: The Output-Error State-Space Model Identification Class of Algorithm
,”
Int. J. Control
,
56
(
5
), pp.
1187
1210
.10.1080/00207179208934363
36.
Sadeqi
,
A.
,
Moradi
,
S.
, and
Shirazi
,
K. H.
,
2019
, “
System Identification Based on Output-Only Decomposition and Subspace Appropriation
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
9
), p.
091012
.10.1115/1.4043336
37.
Chu
,
M. T.
,
1998
, “
Inverse Eigenvalue Problems
,”
SIAM Rev.
,
40
(
1
), pp.
1
39
.10.1137/S0036144596303984
38.
Coutino
,
M.
,
Isufi
,
E.
,
Maehara
,
T.
, and
Leus
,
G.
,
2021
, “
State-Space Based Network Topology Identification
,” 2020 28th European Signal Processing Conference (
EUSIPCO
),
IEEE
,
Amsterdam, The Netherlands
, Jan. 18–22, pp.
1055
1059
.10.23919/Eusipco47968.2020.9287692
39.
Brouwer
,
A. E.
, and
Haemers
,
W. H.
,
2011
,
Spectra of Graphs
,
Springer Science & Business Media
,
New York
.
40.
Babai
,
L.
,
Erdos
,
P.
, and
Selkow
,
S. M.
,
1980
, “
Random Graph Isomorphism
,”
SIAM J. Comput.
,
9
(
3
), pp.
628
635
.10.1137/0209047
41.
Delest
,
M.-P.
, and
Viennot
,
G.
,
1984
, “
Algebraic Languages and Polyominoes Enumeration
,”
Theor. Comput. Sci.
,
34
(
1–2
), pp.
169
206
.10.1016/0304-3975(84)90116-6
42.
Zheng
,
C.
,
Wen
,
J. T.
, and
Diagne
,
M.
,
2020
, “
Distributed Temperature Control in Laser-Based Manufacturing
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
6
), p.
061001
.10.1115/1.4046154
43.
Quarteroni
,
A.
,
Sacco
,
R.
, and
Saleri
,
F.
,
2010
,
Numerical Mathematics
,
37
,
Springer Science & Business Media
,
Heidelberg, Germany
.
44.
Buswell
,
R. A.
,
De Silva
,
W. L.
,
Jones
,
S. Z.
, and
Dirrenberger
,
J.
,
2018
, “
3D Printing Using Concrete Extrusion: A Roadmap for Research
,”
Cem. Concr. Res.
,
112
, pp.
37
49
.10.1016/j.cemconres.2018.05.006
45.
Paul
,
S. C.
,
van Zijl
,
G. P.
,
Tan
,
M. J.
, and
Gibson
,
I.
,
2018
, “
A Review of 3D Concrete Printing Systems and Materials Properties: Current Status and Future Research Prospects
,”
Rapid Prototyping J.
,
24
(
4
), pp.
784
798
.10.1108/RPJ-09-2016-0154
46.
Spotlight Metal
,
2018
, “Desktop metal enables fastest metal printer of the world,” accessed Dec. 6, 2022, https://web.archive.org/web/20200627162942/https://www.spotlightmetal.com/desktop-metal-enables-fastest-metal-printer-of-theworld-a-781968/
47.
Carson
,
J. K.
,
Lovatt
,
S. J.
,
Tanner
,
D. J.
, and
Cleland
,
A. C.
,
2005
, “
Thermal Conductivity Bounds for Isotropic, Porous Materials
,”
Int. J. Heat Mass Transfer
,
48
(
11
), pp.
2150
2158
.10.1016/j.ijheatmasstransfer.2004.12.032
48.
Smith
,
D. S.
,
Alzina
,
A.
,
Bourret
,
J.
,
Nait-Ali
,
B.
,
Pennec
,
F.
,
Tessier-Doyen
,
N.
,
Otsu
,
K.
,
Matsubara
,
H.
,
Elser
,
P.
, and
Gonzenbach
,
U. T.
,
2013
, “
Thermal Conductivity of Porous Materials
,”
J. Mater. Res.
,
28
(
17
), pp.
2260
2272
.10.1557/jmr.2013.179
49.
Merris
,
R.
,
1994
, “
Laplacian Matrices of Graphs: A Survey
,”
Linear Algebra Its Appl.
,
197–198
, pp.
143
176
.10.1016/0024-3795(94)90486-3
50.
Ljung
,
L.
,
1971
, “
Characterization of the Concept of ‘Persistently Exciting’ in the Frequency Domain
,”
Department of Automatic Control, Lund Institute of Technology (LTH)
, Report No. TFRT-3038.
51.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
,
1987
, “
Persistent Excitation in Adaptive Systems
,”
Int. J. Control
,
45
(
1
), pp.
127
160
.10.1080/00207178708933715
52.
Lunnon
,
W.
,
1972
, “
Counting Hexagonal and Triangular Polyominoes
,”
Graph Theory and Computing
,
R. C.
Read
, ed.,
Academic Press
,
New York
, pp.
87
100
.
53.
Guttmann
,
A. J.
,
Jensen
,
I.
,
Wong
,
L. H.
, and
Enting
,
I. G.
,
2000
, “
Punctured Polygons and Polyominoes on the Square Lattice
,”
J. Phys. A: Math. General
,
33
(
9
), pp.
1735
1764
.10.1088/0305-4470/33/9/303
54.
Duty
,
C.
,
Ajinjeru
,
C.
,
Kishore
,
V.
,
Compton
,
B.
,
Hmeidat
,
N.
,
Chen
,
X.
,
Liu
,
P.
,
Hassen
,
A. A.
,
Lindahl
,
J.
, and
Kunc
,
V.
,
2018
, “
What Makes a Material Printable? A Viscoelastic Model for Extrusion-Based 3D Printing of Polymers
,”
J. Manuf. Process.
,
35
, pp.
526
537
.10.1016/j.jmapro.2018.08.008
55.
Katayama
,
T.
,
2005
,
Subspace Methods for System Identification
, Vol.
1
,
Springer
,
London
.
56.
Fukaya
,
T.
,
Kannan
,
R.
,
Nakatsukasa
,
Y.
,
Yamamoto
,
Y.
, and
Yanagisawa
,
Y.
,
2020
, “
Shifted Cholesky QR for Computing the QR Factorization of Ill-Conditioned Matrices
,”
SIAM J. Sci. Comput.
,
42
(
1
), pp.
A477
A503
.10.1137/18M1218212
57.
Vogel
,
C. R.
, and
Wade
,
J.
,
1994
, “
Iterative SVD-Based Methods for Ill-Posed Problems
,”
SIAM J. Sci. Comput.
,
15
(
3
), pp.
736
754
.10.1137/0915047
58.
Liao
,
J. C.
,
2007
, “
A Review of Fish Swimming Mechanics and Behaviour in Altered Flows
,”
Philos. Trans. R. Soc., B
,
362
(
1487
), pp.
1973
1993
.10.1098/rstb.2007.2082
59.
Weihs
,
D.
,
1975
, “
Some Hydrodynamical Aspects of Fish Schooling
,”
Swimming and Flying in Nature
,
Springer
,
New York
, pp.
703
718
.
60.
Pitcher
,
T. J.
,
Partridge
,
B. L.
, and
Wardle
,
C.
,
1976
, “
A Blind Fish Can School
,”
Science
,
194
(
4268
), pp.
963
965
.10.1126/science.982056
You do not currently have access to this content.