Abstract

Latent thermal energy storage (TES) devices could enable advances in many thermal management applications, including peak load shifting for reducing energy demand and cost of HVAC or providing supplemental heat rejection in transient thermal management systems. However, real-time feedback control of such devices is currently limited by the absence of suitable state of charge estimation techniques, given the nonlinearities associated with phase change dynamics. In this paper, we design and experimentally validate a state-dependent Riccati equation (SDRE) filter for state of charge estimation in a phase change material (PCM)-based TES device integrated into a single-phase thermal-fluid loop. The advantage of the SDRE filter is that it does not require linearization of the nonlinear finite volume model; instead, it uses a linear parameter-varying system model which can be quickly derived using graph-based methods. We leverage graph-based methods to prove that the system model is uniformly detectable, guaranteeing that the state estimates are bounded. Using measurements from five thermocouples embedded in the PCM of the TES and two thermocouples measuring the fluid temperature at the inlet and outlet of the device, the state estimator uses a reduced-order finite volume model to determine the temperature distribution inside the PCM and in turn, the state of charge of the device. We demonstrate the state estimator in simulation and on experimental data collected from a thermal management system testbed to show that the state estimation error converges near zero and remains bounded.

References

1.
Shanks
,
M.
, and
Jain
,
N.
,
2022
, “
Control of a Hybrid Thermal Management System: A Heuristic Strategy for Charging and Discharging a Latent Thermal Energy Storage Device
,”
21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)
, San Diego, CA, May 31–June 3, pp.
1
10
.10.1109/iTherm54085.2022.9899546
2.
Shafiei
,
S. E.
, and
Alleyne
,
A.
,
2015
, “
Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrigeration
,”
Appl. Therm. Eng.
,
82
, pp.
264
280
.10.1016/j.applthermaleng.2015.02.053
3.
Pangborn
,
H. C.
,
Laird
,
C. E.
, and
Alleyne
,
A. G.
,
2020
, “
Hierarchical Hybrid MPC for Management of Distributed Phase Change Thermal Energy Storage
,”.
Proceedings of the 2020 American Control Conference (ACC)
, Denver, CO, July 1–3, pp.
4147
4153
.10.23919/ACC45564.2020.9147698
4.
Barz
,
T.
,
Seliger
,
D.
,
Marx
,
K.
,
Sommer
,
A.
,
Walter
,
S. F.
,
Bock
,
H. G.
, and
Körkel
,
S.
,
2018
, “
State and State of Charge Estimation for a Latent Heat Storage
,”
Control Eng. Pract.
,
72
, pp.
151
166
.10.1016/j.conengprac.2017.11.006
5.
Zsembinszki
,
G.
,
Orozco
,
C.
,
Gasia
,
J.
,
Barz
,
T.
,
Emhofer
,
J.
, and
Cabeza
,
L. F.
,
2020
, “
Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank
,”
Energies
,
13
(
6
), p.
1425
.10.3390/en13061425
6.
Paberit
,
R.
, and
Öjerborn
,
J.
,
2016
, “
Detecting State of Charge in PCMs - Experimental Investigation of Changes in Chemical and Physical Properties During Phase Transitions
,” Master's thesis,
Chalmers University of Technology
,
Göteborg, Sweden
.
7.
Beyne
,
W.
,
Couvreur
,
K.
,
T'Jollyn
,
I.
,
Lecompte
,
S.
, and
De Paepe
,
M.
,
2022
, “
Estimating the State of Charge in a Latent Thermal Energy Storage Heat Exchanger Based on Inlet/Outlet and Surface Measurements
,”
Appl. Therm. Eng.
,
201
, p.
117806
.10.1016/j.applthermaleng.2021.117806
8.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
9.
Luenberger
,
D.
,
1966
, “
Observers for Multivariable Systems
,”
IEEE Trans. Autom. Control
,
11
(
2
), pp.
190
197
.10.1109/TAC.1966.1098323
10.
Henze
,
G.
,
Kalz
,
D.
,
Liu
,
S.
, and
Felsmann
,
C.
,
2005
, “
Experimental Analysis of Model-Based Predictive Optimal Control for Active and Passive Building Thermal Storage Inventory
,”
HVACR Res.
,
11
(
2
), pp.
189
213
.10.1080/10789669.2005.10391134
11.
Steinmaurer
,
G.
,
Krupa
,
M.
, and
Kefer
,
P.
,
2014
, “
Development of Sensors for Measuring the Enthalpy of PCM Storage Systems
,”
Energy Procedia
,
48
pp.
440
446
.10.1016/j.egypro.2014.02.052
12.
Charvát
,
P.
,
Štětina
,
J.
,
Mauder
,
T.
, and
Klimeš
,
L.
,
2017
, “
Visual Monitoring of the Melting Front Propagation in a Paraffin-Based PCM
,”
EPJ Web Conf.
,
143
, p.
02042
.10.1051/epjconf/201714302042
13.
Ezan
,
M. A.
,
Çetin
,
L.
, and
Erek
,
A.
,
2011
, “
Ice Thickness Measurement Method for Thermal Energy Storage Unit
,”
J. Therm. Sci. Technol.
,
31
(
1
), pp.
1
10
.10.5072/ZENODO.31894
14.
Pernsteiner
,
D.
,
Schirrer
,
A.
,
Kasper
,
L.
,
Hofmann
,
R.
, and
Jakubek
,
S.
,
2021
, “
State Estimation Concept for a Nonlinear Melting/Solidification Problem of a Latent Heat Thermal Energy Storage
,”
Comput. Chem. Eng.
,
153
, p.
107444
.10.1016/j.compchemeng.2021.107444
15.
Jaccoud
,
B. R.
,
Orlande
,
H. R. B.
,
Colaço
,
M. J.
,
Fudym
,
O.
, and
Caldeira
,
A. B.
,
2018
, “
State Estimation for the Thermal Storage in Phase Change Materials Containing Nanoparticles
,”
High Temp.-High Pressures
,
47
(
2
), pp.
117
137
.https://www.webofscience.com/wos/woscc/fullrecord/WOS:000430789900002
16.
Morales Sandoval
,
D. A.
,
De La Cruz Loredo
,
I.
,
Bastida
,
H.
,
Badman
,
J. J. R.
, and
Ugalde-Loo
,
C. E.
,
2021
, “
Design and Verification of an Effective State-of-Charge Estimator for Thermal Energy Storage
,”
IET Smart Grid
,
4
(
2
), pp.
202
214
.10.1049/stg2.12024
17.
Mracek
,
C.
,
Clontier
,
J.
, and
D'Souza
,
C.
,
1996
, “
A New Technique for Nonlinear Estimation
,”
Proceeding of the 1996 IEEE International Conference on Control Applications
, Dearborn, MI, Sept. 15–18, pp.
338
343
.10.1109/CCA.1996.558760
18.
Jaganath
,
C.
,
Ridley
,
A.
, and
Bernstein
,
D.
,
2005
, “
A SDRE-Based Asymptotic Observer for Nonlinear Discrete-Time Systems
,”
Proceedings of the 2005 American Control Conference
, Vol.
5
, Portland, OR, June 8–10, pp.
3630
3635
.10.1109/ACC.2005.1470537
19.
Berman
,
A.
,
Zarchan
,
P.
, and
Lewis
,
B.
,
2014
, “
Comparisons Between the Extended Kalman Filter and the State-Dependent Riccati Estimator
,”
J. Guid., Control, Dyn.
,
37
(
5
), pp.
1556
1567
.10.2514/1.G000332
20.
Gelb
,
A.
,
1974
,
Applied Optimal Estimation
,
The Analytic Sciences Corporation, The MIT Press
,
London
.
21.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
A New Extension of the Kalman Filter to Nonlinear Systems
,”
Signal Processing, Sensor Fusion, and Target Recognition VI, Proc. SPIE
,
3068
, pp.
182
193
.10.1117/12.280797
22.
Wan
,
E. A.
, and
van der Merwe
,
R.
,
2001
, “
The Unscented Kalman Filter
,”
Kalman Filtering and Neural Networks
,
Wiley Ltd.
,
New York
, pp.
221
280
.
23.
Beikzadeh
,
H.
, and
Taghirad
,
H. D.
,
2012
, “
Exponential Nonlinear Observer Based on the Differential State-Dependent Riccati Equation
,”
Int. J. Autom. Comput.
,
9
(
4
), pp.
358
368
.10.1007/s11633-012-0656-y
24.
Ewing
,
C.
,
2000
, “
An Analysis of the State Dependent Riccati Equation Method Nonlinear Estimation Technique
,” AIAA Paper No.
2000
4275
.10.2514/6.2000-4275
25.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley
,
Hoboken, NJ
.
26.
Hale
,
D. V.
,
Hoover
,
M. J.
, and
O'Neill
,
M. J.
,
1971
, “
Phase Change Materials Handbook
,” Report No. NASA-CR-61363.
27.
Gohil
,
K. N.
,
Deckard
,
M.
,
Shamberger
,
P. J.
, and
Jain
,
N.
,
2020
, “
A Reduced-Order Model for Analyzing Heat Transfer in a Thermal Energy Storage Module
,”
19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Orlando, FL, July 21–23, pp.
681
689
.10.1109/ITherm45881.2020.9190427
28.
Shanks
,
M.
,
Shoalmire
,
C. M.
,
Deckard
,
M.
,
Gohil
,
K. N.
,
Lewis
,
H.
,
Lin
,
D.
,
Shamberger
,
P. J.
, and
Jain
,
N.
,
2022
, “
Design of Spatial Variability in Thermal Energy Storage Modules for Enhanced Power Density
,”
Appl. Energy
,
314
, p.
118966
.10.1016/j.apenergy.2022.118966
29.
Shamberger
,
P. J.
, and
Fisher
,
T. S.
,
2018
, “
Cooling Power and Characteristic Times of Composite Heatsinks and Insulants
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1205
1215
.10.1016/j.ijheatmasstransfer.2017.10.085
30.
Tamraparni
,
A.
,
Hoe
,
A.
,
Deckard
,
M.
,
Zhang
,
C.
,
Elwany
,
A.
,
Shamberger
,
P. J.
, and
Felts
,
J. R.
,
2021
, “
Design and Optimization of Lamellar Phase Change Composites for Thermal Energy Storage
,”
Adv. Eng. Mater.
,
23
(
1
), p.
2001052
.10.1002/adem.202001052
31.
Gillis
,
B.
, and
Jain
,
N.
,
2021
, “
Numerical Validation of Effective Specific Heat Functions for Simulating Melting Dynamics in Latent Heat Thermal Energy Storage Modules
,”
20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, San Diego, CA, June 1–4, pp.
544
550
.10.1109/ITherm51669.2021.9503136
32.
Yang
,
H.
, and
He
,
Y.
,
2010
, “
Solving Heat Transfer Problems With Phase Change Via Smoothed Effective Heat Capacity and Element-Free Galerkin Methods
,”
Int. Commun. Heat Mass Transfer
,
37
(
4
), pp.
385
392
.10.1016/j.icheatmasstransfer.2009.12.002
33.
Sgreva
,
N. R.
,
Noel
,
J.
,
Métivier
,
C.
,
Marchal
,
P.
,
Chaynes
,
H.
,
Isaiev
,
M.
, and
Jannot
,
Y.
,
2022
, “
Thermo-Physical Characterization of Hexadecane During the Solid/Liquid Phase Change
,”
Thermochim. Acta
,
710
, p.
179180
.10.1016/j.tca.2022.179180
34.
Inyang-Udoh
,
U.
,
Shanks
,
M.
, and
Jain
,
N.
,
2022
, “
A (Strongly) Connected Weighted Graph is Uniformly Detectable Based on Any Output Node
,” e-print arXiv:2209.13119.10.48550/arXiv.2209.13119 Focus to learn more
35.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
1981
, “
Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems
,”
SIAM J. Control Optim.
,
19
(
1
), pp.
20
32
.10.1137/0319002
36.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The MATLAB ODE Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.10.1137/S1064827594276424
37.
Barz
,
T.
, and
Emhofer
,
J.
,
2021
, “
Paraffins as Phase Change Material in a Compact Plate-Fin Heat exchanger - Part I: Experimental Analysis and Modeling of Complete Phase Transitions
,”
J. Energy Storage
,
33
, p.
102128
.10.1016/j.est.2020.102128
38.
Cao
,
L.
,
Zheng
,
Y.
, and
Zhou
,
Q.
,
2011
, “
A Necessary and Sufficient Condition for Consensus of Continuous-Time Agents Over Undirected Time-Varying Networks
,”
IEEE Trans. Autom. Control
,
56
(
8
), pp.
1915
1920
.10.1109/TAC.2011.2157393
You do not currently have access to this content.