Thin metallic bipolar plates (BPPs) fabricated by stamping technology are regarded as promising alternatives to traditional graphite BPPs in proton exchange membrane (PEM) fuel cell. However, during the stamping process, dimensional error in terms of the variation in channel height is inevitable, which results in performance loss for PEM fuel cell stack. The objective of this study is to investigate the effect of dimensional error on gas diffusion layer (GDL) pressure characteristics in the multicell stacks. At first, parameterized finite element (FE) model of metallic BPP/GDL assembly is established, and the height of channels is considered as varying parameters of linear distribution according to measurements of actual BPPs. Evaluation methods of GDL contact pressure are developed by considering the pressure distribution in the in-plane and through-plane directions. Then, simulation of the assembly process for a series of multicell stacks is performed to explore the relation between dimensional error and contact pressure based on the evaluation methods. Influences of channel number, cell number, and clamping force on the constitutive relation are discussed. At last, experiments are conducted and pressure sensitive films are used to obtain the actual GDL contact pressure. The numerical results show the same trend as experimental results. This study illustrates that contact pressure of each cell layer is in severely uneven distribution for the in-plane direction, and pressure change is unavoidable for the through-plane direction in the multicell stack, especially for the first several cells close to the endplate. The methodology developed is beneficial to the understanding of the dimensional error effect, and it can also be applied to guide the assembling of PEM fuel cell stack.

References

1.
Peng
,
L. F.
,
Liu
,
D. A.
,
Hu
,
P.
,
Lai
,
X. M.
, and
Ni
,
J.
,
2010
, “
Fabrication of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cell by Flexible Forming Process-Numerical Simulations and Experiments
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
3
), p.
031009
.10.1115/1.3207870
2.
Peker
,
M. F.
,
Cora
,
Ö. N.
, and
Koc
,
M.
,
2011
, “
Investigations on the Variation of Corrosion and Contact Resistance Characteristics of Metallic Bipolar Plates Manufactured Under Long-Run Conditions
,”
Int. J. Hydrogen Energy
,
36
(
23
), pp.
15427
15436
.10.1016/j.ijhydene.2011.08.067
3.
Li
,
M. C.
,
Zhang
,
L. H.
,
Wang
,
S. X.
, and
Hu
,
S. J.
,
2008
, “
Design, Manufacturing, and Performance of PEM Fuel Cell Metallic Bipolar Plates
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
1
), p.
011014
.10.1115/1.2784284
4.
Mahabunphachai
,
S.
,
Cora
,
Ö. N.
, and
Koc
,
M.
,
2010
, “
Effect of Manufacturing Processes on Formability and Surface Topography of Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates
,”
J. Power Sources
,
195
(
16
), pp.
5269
5277
.10.1016/j.jpowsour.2010.03.018
5.
Li
,
H. Z.
,
Dong
,
X. H.
,
Shen
,
Y.
,
Diehl
,
A.
,
Hagenah
,
H.
,
Engel
,
U.
, and
Merklein
,
M.
,
2010
, “
Size Effect on Springback Behavior Due to Plastic Strain Gradient Hardening in Microbending Process of Pure Aluminum Foils
,”
Mater. Sci. Eng., A
,
527
(
16–17
), pp.
4497
4504
.10.1016/j.msea.2010.03.105
6.
Zhang
,
Z. T.
, and
Hu
,
S. J.
,
1998
, “
Stress and Residual Stress Distributions in Plane Strain Bending
,”
Int. J. Mech. Sci.
,
40
(
6
), pp.
533
543
.10.1016/S0020-7403(97)00075-1
7.
Hino
,
R.
,
Goto
,
Y.
, and
Yoshida
,
F.
,
2003
, “
Springback of Sheet Metal Laminates in Draw-Bending
,”
J. Mater. Process. Technol.
,
139
(
1–3
), pp.
341
347
.10.1016/S0924-0136(03)00541-7
8.
Marcinkoski
,
J.
,
James
,
B. D.
,
Kalinoski
,
J. A.
,
Podolski
,
W.
,
Benjamin
,
T.
, and
Kopasz
,
J.
,
2011
, “
Manufacturing Process Assumptions Used in Fuel Cell System Cost Analyses
,”
J. Power Sources
,
196
(
12
), pp.
5282
5292
.10.1016/j.jpowsour.2011.02.035
9.
Chen
,
T. C.
, and
Ye
,
J. M.
,
2012
, “
Fabrication of Micro-Channel Arrays on Thin Stainless Steel Sheets for Proton Exchange Membrane Fuel Cells Using Micro-Stamping Technology
,”
Int. J. Adv. Manuf. Technol.
,
64
(
9–12
), pp.
1365
1372
.10.1007/s00170-012-4107-2
10.
Koo
,
J. Y.
,
Jeon
,
Y. P.
, and
Kang
,
C. G.
,
2013
, “
Effect of Stamping Load Variation on Deformation Behaviour of Stainless Steel Thin Plate With Micro Channel
,”
Proc. Inst. Mech. Eng. B
,
227
(
8
), pp.
1121
1128
.10.1177/0954405412462673
11.
Liu
,
D. A.
,
Peng
,
L. F.
, and
Lai
,
X. M.
,
2009
, “
Effect of Dimensional Error of Metallic Bipolar Plate on the GDL Pressure Distribution in the PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
990
997
.10.1016/j.ijhydene.2008.10.081
12.
Shimpalee
,
S.
,
Lilavivat
,
V.
,
Van Zee
,
J. W.
,
McCrabb
,
H.
, and
Lozano-Morales
,
A.
,
2011
, “
Understanding the Effect of Channel Tolerances on Performance of PEMFCs
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12512
12523
.10.1016/j.ijhydene.2011.06.146
13.
Turan
,
C.
,
Cora
,
Ö. N.
, and
Koc
,
M.
,
2011
, “
Effect of Manufacturing Processes on Contact Resistance Characteristics of Metallic Bipolar Plates in PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12370
12380
.10.1016/j.ijhydene.2011.06.091
14.
Vlahinos
,
A.
,
Kelly
,
K.
,
D'Aleo
,
J.
, and
Stathopoulos
,
J.
,
2003
, “
Effect of Material and Manufacturing Variations on Membrane Electrode Assembly Pressure Distribution
,”
First International Conference on Fuel Cell Science, Engineering and Technology
,
Rochester
,
NY
, Apr. 21–23, pp. 111–120.
15.
Qiu
,
D. K.
,
Yi
,
P. Y.
,
Peng
,
L. F.
, and
Lai
,
X. M.
,
2013
, “
Study on Shape Error Effect of Metallic Bipolar Plate on the GDL Contact Pressure Distribution in Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
38
(
16
), pp.
6762
6772
.10.1016/j.ijhydene.2013.03.105
16.
Su
,
Z. Y.
,
Liu
,
C. T.
,
Chang
,
H. P.
,
Li
,
C. H.
,
Huang
,
K. J.
, and
Sui
,
P. C.
,
2008
, “
A Numerical Investigation of the Effects of Compression Force on PEM Fuel Cell Performance
,”
J. Power Sources
,
183
(
1
), pp.
182
192
.10.1016/j.jpowsour.2008.04.060
17.
Taymaz
,
I.
, and
Benli
,
M.
,
2010
, “
Numerical Study of Assembly Pressure Effect on the Performance of Proton Exchange Membrane Fuel Cell
,”
Energy
,
35
(
5
), pp.
2134
2140
.10.1016/j.energy.2010.01.032
18.
Mikkola
,
M.
,
Tingelöf
,
T.
, and
Ihonen
,
J. K.
,
2009
, “
Modelling Compression Pressure Distribution in Fuel Cell Stacks
,”
J. Power Sources
,
193
(
1
), pp.
269
275
.10.1016/j.jpowsour.2009.01.033
19.
Zhang
,
L. H.
,
Liu
,
Y.
,
Song
,
H. M.
,
Wang
,
S. X.
,
Zhou
,
Y.
, and
Hu
,
S. J.
,
2006
, “
Estimation of Contact Resistance in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
162
(
2
), pp.
1165
1171
.10.1016/j.jpowsour.2006.07.070
20.
García-Salaberri
,
P. A.
,
Vera
,
M.
, and
Zaera
,
R.
,
2011
, “
Nonlinear Orthotropic Model of the Inhomogeneous Assembly Compression of PEM Fuel Cell Gas Diffusion Layers
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
11856
11870
.10.1016/j.ijhydene.2011.05.152
21.
Lee
,
S. J.
,
Hsu
,
C. D.
, and
Huang
,
C. H.
,
2005
, “
Analyses of the Fuel Cell Stack Assembly Pressure
,”
J. Power Sources
,
145
(
2
), pp.
353
361
.10.1016/j.jpowsour.2005.02.057
22.
Lai
,
X. M.
,
Liu
,
D. A.
,
Peng
,
L. F.
, and
Ni
,
J.
,
2008
, “
A Mechanical-Electrical Finite Element Method Model for Predicting Contact Resistance Between Bipolar Plate and Gas Diffusion Layer in PEM Fuel Cells
,”
J. Power Sources
,
182
(
1
), pp.
153
159
.10.1016/j.jpowsour.2008.03.069
23.
Yi
,
P. Y.
,
Peng
,
L. F.
,
Lai
,
X. M.
, and
Ni
,
J.
,
2011
, “
A Numerical Model for Predicting Gas Diffusion Layer Failure in Proton Exchange Membrane Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
1
), p.
011011
.10.1115/1.4002312
24.
Zhou
,
Y.
,
Lin
,
G.
,
Shih
,
A. J.
, and
Hu
,
S. J.
,
2008
, “
Multi-Physics Modeling of Assembly Pressure Effects on PEM Fuel Cell Performance
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
4
), p.
041005
.10.1115/1.3081426
25.
Zhou
,
P.
, and
Wu
,
C. W.
,
2007
, “
Numerical Study on the Compression Effect of Gas Diffusion Layer on PEMFC Performance
,”
J. Power Sources
,
170
(
1
), pp.
93
100
.10.1016/j.jpowsour.2007.03.073
26.
Ge
,
J. B.
,
Higier
,
A.
, and
Liu
,
H. T.
,
2006
, “
Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance
,”
J. Power Sources
,
159
(
2
), pp.
922
927
.10.1016/j.jpowsour.2005.11.069
27.
Yi
,
Y.
,
Tu
,
Z. K.
,
Zhan.
,
Z. G.
, and
Pan
,
M.
,
2012
, “
Gravity Effect on the Performance of PEM Fuel Cell Stack With Different Gas Manifold Positions
,”
Int. J. Energy Res.
,
36
(
7
), pp.
845
855
.10.1002/er.1837
28.
Sun
,
W.
,
Peppley
,
B. A.
, and
Karan
,
K.
,
2005
, “
Modeling the Influence of GDL and Flow-Field Plate Parameters on the Reaction Distribution in the PEMFC Cathode Catalyst Layer
,”
J. Power Sources
,
144
(
1
), pp.
42
53
.10.1016/j.jpowsour.2004.11.035
29.
Li
,
X. G.
, and
Sabir
,
I.
,
2005
, “
Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs
,”
Int. J. Hydrogen Energy
,
30
(
4
), pp.
359
371
.10.1016/j.ijhydene.2004.09.019
30.
Poornesh
,
K. K.
,
Lee
,
S.-K.
,
Cho
,
C.
, and
Choi
,
K.-W.
,
2010
, “
Effect of Bipolar Plate Materials on the Stress Distribution and Interfacial Contact Resistance in PEM Fuel Cell
,”
Int. J. Precis. Eng. Manuf.
,
11
(
4
), pp.
583
588
.10.1007/s12541-010-0067-3
31.
Mathias
,
M. F.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
,
2010
, “
Diffusion Media Materials and Characterization
,”
Handbook of Fuel Cells: Fundamentals, Technology and Applications
,
Wiley
,
New York
, pp.
1
21
.
32.
Yuan
,
W.
,
Tang
,
Y.
,
Yang
,
X. J.
, and
Wan
,
Z. P.
,
2012
, “
Porous Metal Materials for Polymer Electrolyte Membrane Fuel Cells—A Review
,”
Appl. Energy
,
94
, pp.
309
329
.10.1016/j.apenergy.2012.01.073
33.
Lee
,
W.
,
Ho
,
C. H.
,
Van Zee
,
J. W.
, and
Murthy
,
M.
,
1999
, “
The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell
,”
J. Power Sources
,
84
(
1
), pp.
45
51
.10.1016/S0378-7753(99)00298-0
34.
Wang
,
X. T.
,
Song
,
Y.
, and
Zhang
,
B.
,
2008
, “
Experimental Study on Clamping Pressure Distribution in PEM Fuel Cells
,”
J. Power Sources
,
179
(
1
), pp.
305
309
.10.1016/j.jpowsour.2007.12.055
35.
Wen
,
C. Y.
,
Lin
,
Y. S.
, and
Lu
,
C. H.
,
2009
, “
Experimental Study of Clamping Effects on the Performances of a Single Proton Exchange Membrane Fuel Cell and a 10-Cell Stack
,”
J. Power Sources
,
192
(
2
), pp.
475
485
.10.1016/j.jpowsour.2009.03.058
You do not currently have access to this content.