The performance of a proton exchange membrane (PEM) fuel cell strongly depends on the nature of reactant distribution and the effectiveness of liquid water removal. In this work, three different configurations of a mixed flow distributor are studied analytically and numerically to find out the effect of nonuniform under-rib convection on reactant and liquid water distribution in the cell. In a mixed flow distributor, the rate of under-rib convection is found to be different under each rib in the same flow sector which results in different rates of removal of liquid water. This helps to retain some water to hydrate the membrane, whereas the excess is removed to avoid flooding. It is found that under-rib convection aids to get better reactant distribution, reduces pressure drop, and provides better control over liquid water removal which is helpful in developing efficient water management strategies for PEM fuel cells.

References

1.
Li
,
H.
,
Tang
,
Y.
,
Wang
,
Z.
,
Shi
,
Z.
,
Wu
,
S.
,
Song
,
D.
,
Zhang
,
J.
,
Fatih
,
K.
,
Zhang
,
J.
,
Wang
,
H.
,
Liu
,
Z.
,
Abouatallah
,
R.
, and
Mazza
,
A.
,
2008
, “
A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
178
(
1
), pp.
103
117
.10.1016/j.jpowsour.2007.12.068
2.
Aiyejina
,
A.
, and
Sastry
,
M. K. S.
,
2012
, “
PEMFC Flow Channel Geometry Optimization: A Review
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
1
), p.
011011
.10.1115/1.4005393
3.
Li
,
Y.-S.
,
Han
,
Y.
, and
Zhan
,
J.-M.
,
2013
, “
Uniformity Analysis in Different Flow-Field Configurations of Proton Exchange Membrane Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
3
), p.
031003
.10.1115/1.4024252
4.
Choi
,
K.-S.
,
Kim
,
B.-G.
,
Park
,
K.
, and
Kim
,
H.-M.
,
2012
, “
Current Advances in Polymer Electrolyte Fuel Cells Based on the Promotional Role of Under-Rib Convection
,”
Fuel Cells
,
12
(
6
), pp.
908
938
.10.1002/fuce.201200035
5.
Kanezaki
,
T.
,
Li
,
X.
, and
Baschuk
,
J.
,
2006
, “
Cross-Leakage Flow Between Adjacent Flow Channels in PEM Fuel Cells
,”
J. Power Sources
,
162
(
1
), pp.
415
425
.10.1016/j.jpowsour.2006.07.023
6.
Sun
,
L.
,
Oosthuizen
,
P. H.
, and
McAuley
,
K. B.
,
2006
, “
A Numerical Study of Channel-to-Channel Flow Cross-Over Through the Gas Diffusion Layer in a PEM-Fuel-Cell Flow System Using a Serpentine Channel With a Trapezoidal Cross-Sectional Shape
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
1021
1026
.10.1016/j.ijthermalsci.2006.01.005
7.
Shi
,
Z.
, and
Wang
,
X.
,
2008
, “
A Numerical Study of Flow Crossover Between Adjacent Flow Channels in a Proton Exchange Membrane Fuel Cell With Serpentine Flow Field
,”
J. Power Sources
,
185
(
2
), pp.
985
992
.10.1016/j.jpowsour.2008.09.008
8.
Suresh
,
P. V.
,
Jayanti
,
S.
,
Deshpande
,
A. P.
, and
Haridoss
,
P.
,
2011
, “
An Improved Serpentine Flow Field With Enhanced Cross-Flow for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6067
6072
.10.1016/j.ijhydene.2011.01.147
9.
Park
,
K.
,
Kim
,
H.-M.
, and
Choi
,
K.-S.
,
2013
, “
Numerical and Experimental Verification of the Polymer Electrolyte Fuel Cell Performances Enhanced by Under-Rib Convection
,”
Fuel Cells
,
13
(
5
), pp.
927
934
.10.1002/fuce.201200127
10.
Bachman
,
J.
,
Santamaria
,
A.
,
Tang
,
H.-Y.
, and
Park
,
J. W.
,
2012
, “
Investigation of Polymer Electrolyte Membrane Fuel Cell Parallel Flow Field With Induced Cross Flow
,”
J. Power Sources
,
198
(
0
), pp.
143
148
.10.1016/j.jpowsour.2011.09.047
11.
Bansode
,
A. S.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Computational and Experimental Studies on the Effect of Flow-Distributors on the Performance of PEMFC
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
5
), p.
051014
.10.1115/1.4000678
12.
Jithesh
,
P. K.
,
Bansode
,
A. S.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2012
, “
The Effect of Flow Distributors on the Liquid Water Distribution and Performance of a PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17158
17171
.10.1016/j.ijhydene.2012.08.058
13.
Park
,
J.
, and
Li
,
X.
,
2011
, “
An Analytical Analysis on the Cross Flow in a PEM Fuel Cell With Serpentine Flow Channel
,”
Int. J. Energy Res.
,
35
(
7
), pp.
583
593
.10.1002/er.1712
14.
Bruus
,
H.
,
2008
,
Theoretical Microfluidics
,
Oxford University Press
,
Oxford, UK
.
15.
Wang
,
Y.
, and
Wang
,
C. Y.
,
2005
, “
Modeling Polymer Electrolyte Fuel Cells With Large Density and Velocity Changes
,”
J. Electrochem. Soc.
,
152
(
2
), pp.
A445
A453
.10.1149/1.1851059
16.
Maharudrayya
,
S.
,
Jayanti
,
S.
, and
Deshpande
,
A. P.
,
2005
, “
Flow Distribution and Pressure Drop in Parallel-Channel Configurations of Planar Fuel Cells
,”
J. Power Sources
,
144
(
1
), pp.
94
106
.10.1016/j.jpowsour.2004.12.018
17.
Fluent,
2006
, Fluent 6, User Guide and UDF Manual, Fluent Inc., Lebanon, NH.
You do not currently have access to this content.