This work presents a comparison between carbon felt-type and paper-type gas diffusion layers (GDLs) for polymer electrolyte membrane (PEM) fuel cells in terms of the similarities and the differences between their microstructures and the corresponding manner in which liquid water accumulated within the microstructures during operation. X-ray computed tomography (CT) was used to investigate the microstructure of single-layered GDLs (without a microporous layer (MPL)) and bilayered GDLs (with an MPL). In-operando synchrotron X-ray radiography was used to visualize the GDL liquid water accumulation during fuel cell operation as a function of current density. The felt-type GDLs studied here exhibited a more uniform porosity in the core regions, and the carbon fibers in the substrate were more prone to MPL intrusion. More liquid water accumulated in the felt-type GDLs during fuel cell operation; however, when differentiating between the microstructural impact of felt and paper GDLs, the presence of an MPL in bilayered GDLs was the most influential factor in liquid water management.

References

1.
Mathias
,
M. F.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
,
2010
, “
Diffusion Media Materials and Characterisation
,”
Handbook of Fuel Cells
,
Wiley
,
Chichester, UK
.
2.
Cindrella
,
L.
,
Kannan
,
A. M.
,
Lin
,
J. F.
,
Saminathan
,
K.
,
Ho
,
Y.
,
Lin
,
C. W.
, and
Wertz
,
J.
,
2009
, “
Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells—A Review
,”
J. Power Sources
,
194
(
1
), pp.
146
160
.
3.
Hung
,
C.-H.
,
Chiu
,
C.-H.
,
Wang
,
S.-P.
,
Chiang
,
I.-L.
, and
Yang
,
H.
,
2012
, “
Ultra Thin Gas Diffusion Layer Development for PEMFC
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12805
12812
.
4.
Lee
,
J.
,
Chevalier
,
S.
,
Banerjee
,
R.
,
Antonacci
,
P.
,
Ge
,
N.
,
Yip
,
R.
,
Kotaka
,
T.
,
Tabuchi
,
Y.
, and
Bazylak
,
A.
,
2017
, “
Investigating the Effects of Gas Diffusion Layer Substrate Thickness on Polymer Electrolyte Membrane Fuel Cell Performance Via Synchrotron X-Ray Radiography
,”
Electrochim. Acta
,
236
, pp.
161
170
.
5.
Göbel
,
M.
,
Godehardt
,
M.
, and
Schladitz
,
K.
,
2017
, “
Multi-Scale Structural Analysis of Gas Diffusion Layers
,”
J. Power Sources
,
355
, pp.
8
17
.
6.
Park
,
S.
,
Lee
,
J.-W.
, and
Popov
,
B. N.
,
2012
, “
A Review of Gas Diffusion Layer in PEM Fuel Cells: Materials and Designs
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
5850
5865
.
7.
Banerjee
,
R.
,
Hinebaugh
,
J.
,
Liu
,
H.
,
Yip
,
R.
,
Ge
,
N.
, and
Bazylak
,
A.
,
2016
, “
Heterogeneous Porosity Distributions of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layer Materials With Rib-Channel Compression
,”
Int. J. Hydrogen Energy
,
41
(
33
), pp.
14885
14896
.
8.
Arvay
,
A.
,
Yli-Rantala
,
E.
,
Liu
,
C.-H.
,
Peng
,
X.-H.
,
Koski
,
P.
,
Cindrella
,
L.
,
Kauranen
,
P.
,
Wilde
,
P. M.
, and
Kannan
,
A. M.
,
2012
, “
Characterization Techniques for Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells—A Review
,”
J. Power Sources
,
213
, pp.
317
337
.
9.
Rofaiel
,
A.
,
Ellis
,
J. S.
,
Challa
,
P. R.
, and
Bazylak
,
A.
,
2012
, “
Heterogeneous Through-Plane Distributions of Polytetrafluoroethylene in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
,
201
, pp.
219
225
.
10.
El-Kharouf
,
A.
,
Rees
,
N. V.
, and
Steinberger-Wilckens
,
R.
,
2014
, “
Gas Diffusion Layer Materials and Their Effect on Polymer Electrolyte Fuel Cell Performance—Ex Situ and In Situ Characterization
,”
Fuel Cells
,
14
(
5
), pp.
735
741
.
11.
George
,
M.
,
Fishman
,
Z.
,
Botelho
,
S.
, and
Bazylak
,
A.
,
2016
, “
Micro-Computed Tomography-Based Profilometry for Characterizing the Surface Roughness of Microporous Layer-Coated Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
F832
F841
.
12.
Fishman
,
Z.
,
Hinebaugh
,
J.
, and
Bazylak
,
A.
,
2010
, “
Microscale Tomography Investigations of Heterogeneous Porosity Distributions of PEMFC GDLs
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
B1643
B1650
.
13.
Fishman
,
Z.
, and
Bazylak
,
A.
,
2011
, “
Heterogeneous Through-Plane Distributions of Tortuosity, Effective Diffusivity, and Permeability for PEMFC GDLs
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
B247
B252
.
14.
Fishman
,
Z.
, and
Bazylak
,
A.
,
2011
, “
Heterogeneous Through-Plane Porosity Distributions for Treated PEMFC GDLs—I: PTFE Effect
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
B841
B845
.
15.
Fishman
,
Z.
, and
Bazylak
,
A.
,
2011
, “
Heterogeneous Through-Plane Porosity Distributions for Treated PEMFC GDLs—II: Effect of MPL Cracks
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
B846
B851
.
16.
Pfrang
,
A.
,
Veyret
,
D.
,
Sieker
,
F.
, and
Tsotridis
,
G.
,
2010
, “
X-Ray Computed Tomography of Gas Diffusion Layers of PEM Fuel Cells: Calculation of Thermal Conductivity
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3751
3757
.
17.
Flückiger
,
R.
,
Marone
,
F.
,
Stampanoni
,
M.
,
Wokaun
,
A.
, and
Büchi
,
F. N.
,
2011
, “
Investigation of Liquid Water in Gas Diffusion Layers of Polymer Electrolyte Fuel Cells Using X-Ray Tomographic Microscopy
,”
Electrochim. Acta
,
56
(
5
), pp.
2254
2262
.
18.
Markötter
,
H.
,
Manke
,
I.
,
Krüger
,
P.
,
Arlt
,
T.
,
Haussmann
,
J.
,
Klages
,
M.
,
Riesemeier
,
H.
,
Hartnig
,
C.
,
Scholta
,
J.
, and
Banhart
,
J.
,
2011
, “
Investigation of 3D Water Transport Paths in Gas Diffusion Layers by Combined in-Situ Synchrotron X-Ray Radiography and Tomography
,”
Electrochem. Commun.
,
13
(
9
), pp.
1001
1004
.
19.
Epting
,
W. K.
,
Gelb
,
J.
, and
Litster
,
S.
,
2012
, “
Resolving the Three-Dimensional Microstructure of Polymer Electrolyte Fuel Cell Electrodes Using Nanometer-Scale X-Ray Computed Tomography
,”
Adv. Funct. Mater.
,
22
(
3
), pp.
555
560
.
20.
James
,
J. P.
,
Choi
,
H.-W.
, and
Pharoah
,
J. G.
,
2012
, “
X-Ray Computed Tomography Reconstruction and Analysis of Polymer Electrolyte Membrane Fuel Cell Porous Transport Layers
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18216
18230
.
21.
Wargo
,
E. A.
,
Schulz
,
V. P.
,
Çeçen
,
A.
,
Kalidindi
,
S. R.
, and
Kumbur
,
E. C.
,
2013
, “
Resolving Macro- and Micro-Porous Layer Interaction in Polymer Electrolyte Fuel Cells Using Focused Ion Beam and X-Ray Computed Tomography
,”
Electrochim. Acta
,
87
, pp.
201
212
.
22.
Wargo
,
E. A.
,
Kotaka
,
T.
,
Tabuchi
,
Y.
, and
Kumbur
,
E. C.
,
2013
, “
Comparison of Focused Ion Beam Versus Nano-Scale X-Ray Computed Tomography for Resolving 3-D Microstructures of Porous Fuel Cell Materials
,”
J. Power Sources
,
241
, pp.
608
618
.
23.
Lu
,
Z.
,
Daino
,
M. M.
,
Rath
,
C.
, and
Kandlikar
,
S. G.
,
2010
, “
Water Management Studies in PEM Fuel Cells—Part III: Dynamic Breakthrough and Intermittent Drainage Characteristics From GDLs With and Without MPLs
,”
Int. J. Hydrogen Energy
,
35
(
9
), pp.
4222
4233
.
24.
Lu
,
Z.
, and
Patterson
,
J.
,
2013
, “
Investigation of Water Breakthrough and Flow in Gas Diffusion Layers and Relavance to Fuel Cell Water Management
,”
ECS Trans.
,
50
(
2
), pp.
487
501
.
25.
Mortazavi
,
M.
, and
Tajiri
,
K.
,
2014
, “
Liquid Water Breakthrough Pressure Through Gas Diffusion Layer of Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
17
), pp.
9409
9419
.
26.
Kim
,
J.
,
Je
,
J.
,
Kim
,
T.
,
Kaviany
,
M.
,
Son
,
S. Y.
, and
Kim
,
M.
,
2012
, “
Breakthrough/Drainage Pressures and X-Ray Water Visualization in Gas Diffusion Layer of PEMFC
,”
Curr. Appl. Phys.
,
12
(
1
), pp.
105
108
.
27.
Flückiger
,
R.
,
Freunberger
,
S. A.
,
Kramer
,
D.
,
Wokaun
,
A.
,
Scherer
,
G. G.
, and
Büchi
,
F. N.
,
2008
, “
Anisotropic, Effective Diffusivity of Porous Gas Diffusion Layer Materials for PEFC
,”
Electrochim. Acta
,
54
(
2
), pp.
551
559
.
28.
LaManna
,
J. M.
, and
Kandlikar
,
S. G.
, “
Determination of Effective Water Vapor Diffusion Coefficient in PEMFC Gas Diffusion Layers
,”
Int. J. Hydrogen Energy
,
28
, pp. 5021–5029.
29.
Hwang
,
G. S.
, and
Weber
,
A. Z.
,
2012
, “
Effective-Diffusivity Measurement of Partially-Saturated Fuel-Cell Gas-Diffusion Layers
,”
J. Electrochem. Soc.
,
159
(
11
), pp.
F683
F692
.
30.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
,
2006
, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
,
162
(
1
), pp.
228
238
.
31.
Gurau
,
V.
,
Bluemle
,
M. J.
,
De Castro
,
E. S.
,
Tsou
,
Y.-M.
,
Zawodzinski
,
T. A.
, Jr.
, and
Mann
,
J. A.
, Jr.
,
2007
, “
Characterization of Transport Properties in Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells—2: Absolute Permeability
,”
J. Power Sources
,
165
(
2
), pp.
793
802
.
32.
Sadeghifar
,
H.
,
Djilali
,
N.
, and
Bahrami
,
M.
,
2014
, “
Effect of Polytetrafluoroethylene (PTFE) and Micro Porous Layer (MPL) on Thermal Conductivity of Fuel Cell Gas Diffusion Layers: Modeling and Experiments
,”
J. Power Sources
,
248
, pp.
632
641
.
33.
Alhazmi
,
N.
,
Ismail
,
M. S.
,
Ingham
,
D. B.
,
Hughes
,
K. J.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2013
, “
The In-Plane Thermal Conductivity and the Contact Resistance of the Components of the Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
241
, pp.
136
145
.
34.
Unsworth
,
G.
,
Zamel
,
N.
, and
Li
,
X.
,
2012
, “
Through-Plane Thermal Conductivity of the Microporous Layer in a Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
6
), pp.
5161
5169
.
35.
Radhakrishnan
,
A.
,
Lu
,
Z.
, and
Kandlikar
,
S. G.
,
2010
, “
Effective Thermal Conductivity of Gas Diffusion Layers Used in PEMFC: Measured With Guarded-Hot-Plate Method and Predicted by a Fractal Model
,”
ECS Trans.
,
33
(
1
), pp.
1163
1176
.
36.
Khandelwal
,
M.
, and
Mench
,
M. M.
,
2006
, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
,
161
(
2
), pp.
1106
1115
.
37.
Xu
,
G.
,
LaManna
,
J. M.
,
Clement
,
J. T.
, and
Mench
,
M. M.
,
2014
, “
Direct Measurement of Through-Plane Thermal Conductivity of Partially Saturated Fuel Cell Diffusion Media
,”
J. Power Sources
,
256
, pp.
212
219
.
38.
Bazylak
,
A.
,
2009
, “
Liquid Water Visualization in PEM Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3845
3857
.
39.
Kim
,
S.-G.
, and
Lee
,
S.-J.
,
2013
, “
A Review on Experimental Evaluation of Water Management in a Polymer Electrolyte Fuel Cell Using X-Ray Imaging Technique
,”
J. Power Sources
,
230
, pp.
101
108
.
40.
Pekula
,
N.
,
Heller
,
K.
,
Chuang
,
P. A.
,
Turhan
,
A.
,
Mench
,
M. M.
,
Brenizer
,
J. S.
, and
Ünlü
,
K.
,
2005
, “
Study of Water Distribution and Transport in a Polymer Electrolyte Fuel Cell Using Neutron Imaging
,”
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
, Vol.
542
,
Elsevier, Amsterdam
,
The Netherlands
, pp.
134
141
.
41.
Boillat
,
P.
,
Kramer
,
D.
,
Seyfang
,
B. C.
,
Frei
,
G.
,
Lehmann
,
E.
,
Scherer
,
G. G.
,
Wokaun
,
A.
,
Ichikawa
,
Y.
,
Tasaki
,
Y.
, and
Shinohara
,
K.
,
2008
, “
In Situ Observation of the Water Distribution Across a PEFC Using High Resolution Neutron Radiography
,”
Electrochem. Commun.
,
10
(
4
), pp.
546
550
.
42.
Hickner
,
M. A.
,
Siegel
,
N. P.
,
Chen
,
K. S.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
, and
Arif
,
M.
,
2008
, “
In Situ High-Resolution Neutron Radiography of Cross-Sectional Liquid Water Profiles in Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
155
(
4
), pp.
B427
B434
.
43.
Lu
,
Z.
,
Waldecker
,
J.
,
Xie
,
X.
,
Lai
,
M.-C.
,
Hussey
,
D. S.
, and
Jacobson
,
D. L.
,
2013
, “
Investigation of Water Transport in Perforated Gas Diffusion Layer by Neutron Radiography
,”
ECS Trans.
,
58
(
1
), pp.
315
324
.
44.
Kotaka
,
T.
,
Tabuchi
,
Y.
,
Pasaogullari
,
U.
, and
Wang
,
C.-Y.
,
2014
, “
Impact of Interfacial Water Transport in PEMFCs on Cell Performance
,”
Electrochim. Acta
,
146
, pp.
618
629
.
45.
Cooper
,
N. J.
,
Santamaria
,
A. D.
,
Becton
,
M. K.
, and
Park
,
J. W.
, “
Neutron Radiography Measurements of in-Situ PEMFC Liquid Water Saturation in 2D & 3D Morphology Gas Diffusion Layers
,”
Int. J. Hydrogen Energy
,
42
(
25
), pp.
169269
16278
.
46.
Manke
,
I.
,
Hartnig
,
C.
,
Grünerbel
,
M.
,
Lehnert
,
W.
,
Kardjilov
,
N.
,
Haibel
,
A.
,
Hilger
,
A.
,
Banhart
,
J.
, and
Riesemeier
,
H.
,
2007
, “
Investigation of Water Evolution and Transport in Fuel Cells With High Resolution Synchrotron X-Ray Radiography
,”
Appl. Phys. Lett.
,
90
(
17
), p.
174105
.
47.
Hinebaugh
,
J.
,
Lee
,
J.
, and
Bazylak
,
A.
,
2012
, “
Visualizing Liquid Water Evolution in a PEM Fuel Cell Using Synchrotron X-Ray Radiography
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
F826
F830
.
48.
Lee
,
J.
,
Hinebaugh
,
J.
, and
Bazylak
,
A.
,
2013
, “
Synchrotron X-Ray Radiographic Investigations of Liquid Water Transport Behavior in a PEMFC With MPL-Coated GDLs
,”
J. Power Sources
,
227
, pp.
123
130
.
49.
Eller
,
J.
,
Roth
,
J.
,
Marone
,
F.
,
Stampanoni
,
M.
,
Wokaun
,
A.
, and
Büchi
,
F. N.
,
2011
, “
Towards Ultra-Fast X-Ray Tomographic Microscopy of Liquid Water in PEFC
,”
ECS Trans.
,
41
(
1
), pp.
387
394
.
50.
Eller
,
J.
,
Rosén
,
T.
,
Marone
,
F.
,
Stampanoni
,
M.
,
Wokaun
,
A.
, and
Büchi
,
F. N.
,
2011
, “
Progress in In Situ X-Ray Tomographic Microscopy of Liquid Water in Gas Diffusion Layers of PEFC
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
B963
B970
.
51.
Sasabe
,
T.
,
Tsushima
,
S.
, and
Hirai
,
S.
,
2010
, “
In-Situ Visualization of Liquid Water in an Operating PEMFC by Soft X-Ray Radiography
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11119
11128
.
52.
Deevanhxay
,
P.
,
Sasabe
,
T.
,
Tsushima
,
S.
, and
Hirai
,
S.
,
2011
, “
Investigation of Water Accumulation and Discharge Behaviors With Variation of Current Density in PEMFC by High-Resolution Soft X-Ray Radiography
,”
Int. J. Hydrogen Energy
,
36
(
17
), pp.
10901
10907
.
53.
Haußmann
,
J.
,
Markötter
,
H.
,
Alink
,
R.
,
Bauder
,
A.
,
Dittmann
,
K.
,
Manke
,
I.
, and
Scholta
,
J.
,
2013
, “
Synchrotron Radiography and Tomography of Water Transport in Perforated Gas Diffusion Media
,”
J. Power Sources
,
239
, pp.
611
622
.
54.
Banerjee
,
R.
,
Ge
,
N.
,
Lee
,
J.
,
George
,
M. G.
,
Chevalier
,
S.
,
Liu
,
H.
,
Shrestha
,
P.
,
Muirhead
,
D.
, and
Bazylak
,
A.
,
2017
, “
Transient Liquid Water Distributions in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Observed Through In-Operando Synchrotron X-Ray Radiography
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
F154
F162
.
55.
Tötzke
,
C.
,
Gaiselmann
,
G.
,
Osenberg
,
M.
,
Bohner
,
J.
,
Arlt
,
T.
,
Markötter
,
H.
,
Hilger
,
A.
,
Wieder
,
F.
,
Kupsch
,
A.
,
Müller
,
B. R.
,
Hentschel
,
M. P.
,
Banhart
,
J.
,
Schmidt
,
V.
,
Lehnert
,
W.
, and
Manke
,
I.
,
2014
, “
Three-Dimensional Study of Compressed Gas Diffusion Layers Using Synchrotron X-Ray Imaging
,”
J. Power Sources
,
253
, pp.
123
131
.
56.
Dunbar
,
Z.
, and
Masel
,
R. I.
,
2007
, “
Quantitative MRI Study of Water Distribution During Operation of a PEM Fuel Cell Using Teflon® Flow Fields
,”
J. Power Sources
,
171
(
2
), pp.
678
687
.
57.
Minard
,
K. R.
,
Viswanathan
,
V. V.
,
Majors
,
P. D.
,
Wang
,
L.-Q.
, and
Rieke
,
P. C.
,
2006
, “
Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold Flooding During Continuous Fuel Cell Operation
,”
J. Power Sources
,
161
(
2
), pp.
856
863
.
58.
Tüber
,
K.
,
Pócza
,
D.
, and
Hebling
,
C.
,
2003
, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
,
124
(
2
), pp.
403
414
.
59.
Hussaini
,
I. S.
, and
Wang
,
C.-Y.
,
2009
, “
Visualization and Quantification of Cathode Channel Flooding in PEM Fuel Cells
,”
J. Power Sources
,
187
(
2
), pp.
444
451
.
60.
Sergi
,
J. M.
,
Lu
,
Z.
, and
Kandlikar
,
S. G.
,
2009
, “
In Situ Characterization of Two-Phase Flow in Cathode Channels of an Operating PEM Fuel Cell With Visual Access
,”
ASME
Paper No. ICNMM2009-82140.
61.
Sergi
,
J. M.
, and
Kandlikar
,
S. G.
,
2011
, “
Quantification and Characterization of Water Coverage in PEMFC Gas Channels Using Simultaneous Anode and Cathode Visualization and Image Processing
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12381
12392
.
62.
Banerjee
,
R.
, and
Kandlikar
,
S. G.
,
2014
, “
Liquid Water Quantification in the Cathode Side Gas Channels of a Proton Exchange Membrane Fuel Cell Through Two-Phase Flow Visualization
,”
J. Power Sources
,
247
, pp.
9
19
.
63.
Escribano
,
S.
,
Blachot
,
J.-F.
,
Ethève
,
J.
,
Morin
,
A.
, and
Mosdale
,
R.
,
2006
, “
Characterization of PEMFCs Gas Diffusion Layers Properties
,”
J. Power Sources
,
156
(
1
), pp.
8
13
.
64.
Chevalier
,
S.
,
Ge
,
N.
,
George
,
M. G.
,
Lee
,
J.
,
Banerjee
,
R.
,
Liu
,
H.
,
Shrestha
,
P.
,
Muirhead
,
D.
,
Hinebaugh
,
J.
,
Tabuchi
,
Y.
,
Kotaka
,
T.
, and
Bazylak
,
A.
,
2017
, “
Synchrotron X-Ray Radiography as a Highly Precise and Accurate Method for Measuring the Spatial Distribution of Liquid Water in Operating Polymer Electrolyte Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
F107
F114
.
65.
Sasabe
,
T.
,
Deevanhxay
,
P.
,
Tsushima
,
S.
, and
Hirai
,
S.
,
2011
, “
Soft X-Ray Visualization of the Liquid Water Transport Within the Cracks of Micro Porous Layer in PEMFC
,”
Electrochem. Commun.
,
13
(
6
), pp.
638
641
.
66.
Deevanhxay
,
P.
,
Sasabe
,
T.
,
Tsushima
,
S.
, and
Hirai
,
S.
,
2013
, “
Observation of Dynamic Liquid Water Transport in the Microporous Layer and Gas Diffusion Layer of an Operating PEM Fuel Cell by High-Resolution Soft X-Ray Radiography
,”
J. Power Sources
,
230
, pp.
38
43
.
67.
Markötter
,
H.
,
Haußmann
,
J.
,
Alink
,
R.
,
Tötzke
,
C.
,
Arlt
,
T.
,
Klages
,
M.
,
Riesemeier
,
H.
,
Scholta
,
J.
,
Gerteisen
,
D.
,
Banhart
,
J.
, and
Manke
,
I.
,
2013
, “
Influence of Cracks in the Microporous Layer on the Water Distribution in a PEM Fuel Cell Investigated by Synchrotron Radiography
,”
Electrochem. Commun.
,
34
, pp.
22
24
.
68.
Ge
,
N.
,
Chevalier
,
S.
,
Lee
,
J.
,
Yip
,
R.
,
Banerjee
,
R.
,
George
,
M. G.
,
Liu
,
H.
,
Lee
,
C.
,
Fazeli
,
M.
,
Antonacci
,
P.
,
Kotaka
,
T.
,
Tabuchi
,
Y.
, and
Bazylak
,
A.
,
2017
, “
Non-Isothermal Two-Phase Transport in a Polymer Electrolyte Membrane Fuel Cell With Crack-Free Microporous Layers
,”
Int. J. Heat Mass Transfer
,
107
, pp.
418
431
.
69.
Antonacci
,
P.
,
Chevalier
,
S.
,
Lee
,
J.
,
Ge
,
N.
,
Hinebaugh
,
J.
,
Yip
,
R.
,
Tabuchi
,
Y.
,
Kotaka
,
T.
, and
Bazylak
,
A.
,
2016
, “
Balancing Mass Transport Resistance and Membrane Resistance When Tailoring Microporous Layer Thickness for Polymer Electrolyte Membrane Fuel Cells Operating at High Current Densities
,”
Electrochim. Acta
,
188
, pp.
888
897
.
70.
Lee
,
J.
,
Yip
,
R.
,
Antonacci
,
P.
,
Ge
,
N.
,
Kotaka
,
T.
,
Tabuchi
,
Y.
, and
Bazylak
,
A.
,
2015
, “
Synchrotron Investigation of Microporous Layer Thickness on Liquid Water Distribution in a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
F669
F676
.
71.
Zenyuk
,
I. V.
,
Parkinson
,
D. Y.
,
Hwang
,
G.
, and
Weber
,
A. Z.
,
2015
, “
Probing Water Distribution in Compressed Fuel-Cell Gas-Diffusion Layers Using X-Ray Computed Tomography
,”
Electrochem. Commun.
,
53
, pp.
24
28
.
72.
Eller
,
J.
, and
Büchi
,
F. N.
,
2016
, “
Characterization of Water Cluster Connectivity and Fluid Transport in PEFC Gas Diffusion Layers
,”
Meet. Abstr.
,
MA2016-02
(
38
), p. 2494.
73.
Eller
,
J.
,
2013
, “
X-Ray Tomographic Microscopy of Polymer Electrolyte Fuel Cells
,”
Ph.D. thesis
, ETH Zürich, Zürich, Switzerland.
74.
Hinebaugh
,
J.
,
Lee
,
J.
,
Mascarenhas
,
C.
, and
Bazylak
,
A.
,
2015
, “
Quantifying Percolation Events in PEM Fuel Cell Using Synchrotron Radiography
,”
Electrochim. Acta
,
184
, pp.
417
426
.
75.
Muirhead
,
D.
,
Banerjee
,
R.
,
Lee
,
J.
,
George
,
M. G.
,
Ge
,
N.
,
Liu
,
H.
,
Chevalier
,
S.
,
Hinebaugh
,
J.
, and
Bazylak
,
A.
,
2017
, “
Simultaneous Characterization of Oxygen Transport Resistance and Spatially Resolved Liquid Water Saturation at High-Current Density of Polymer Electrolyte Membrane Fuel Cells With Varied Cathode Relative Humidity
,”
Int. J. Hydrogen Energy
(Submitted).
76.
Liu
,
H.
,
George
,
M. G.
,
Banerjee
,
R.
,
Ge
,
N.
,
Lee
,
J.
,
Muirhead
,
D.
,
Shrestha
,
P.
,
Chevalier
,
S.
,
Hinebaugh
,
J.
,
Zeis
,
R.
,
Messerschmidt
,
M.
,
Scholta
,
J.
, and
Bazylak
,
A.
,
2017
, “
Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers—Part 2: Steady State Liquid Water Distributions With in Operando Synchrotron X-Ray Radiography
,”
J. Electrochem. Soc.
,
164
, pp. F704–F713.
77.
Schweiss
,
R.
,
Meiser
,
C.
,
Damjanovic
,
T.
,
Galbiati
,
I.
, and
Haak
,
N.
,
2016
,
SIGRACET Gas Diffusion Layers for PEM Fuel Cells, Electrolyzers and Batteries
,
SGL Carbon GmbH
,
Meitingen, Germany
.
78.
Ostadi
,
H.
,
Rama
,
P.
,
Liu
,
Y.
,
Chen
,
R.
,
Zhang
,
X. X.
, and
Jiang
,
K.
,
2010
, “
3D Reconstruction of a Gas Diffusion Layer and a Microporous Layer
,”
J. Membr. Sci.
,
351
(
1–2
), pp.
69
74
.
79.
Andisheh-Tadbir
,
M.
,
Orfino
,
F. P.
, and
Kjeang
,
E.
,
2016
, “
Three-Dimensional Phase Segregation of Micro-Porous Layers for Fuel Cells by Nano-Scale X-Ray Computed Tomography
,”
J. Power Sources
,
310
, pp.
61
69
.
80.
Banerjee
,
R.
,
Howe
,
D.
,
Mejia
,
V.
, and
Kandlikar
,
S. G.
,
2014
, “
Experimental Validation of Two-Phase Pressure Drop Multiplier as a Diagnostic Tool for Characterizing PEM Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
39
(
31
), pp.
17791
17801
.
81.
Banerjee
,
R.
,
Ge
,
N.
,
Lee
,
J.
,
George
,
M. G.
,
Liu
,
H.
,
Muirhead
,
D.
,
Shrestha
,
P.
,
Chevalier
,
S.
,
Hinebaugh
,
J.
, and
Bazylak
,
A.
,
2016
, “
Determining the Impact of Dynamic Load Conditions on Interfacial Liquid Water Accumulation in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Using Synchrotron X-Ray Radiography
,”
ECS Trans.
,
75
(
14
), pp.
251
259
.
82.
Wysokinski
,
T. W.
,
Chapman
,
D.
,
Adams
,
G.
,
Renier
,
M.
,
Suortti
,
P.
, and
Thomlinson
,
W.
,
2007
, “
Beamlines of the Biomedical Imaging and Therapy Facility at the Canadian Light Source—Part 1
,”
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
, Vol.
582
, Elsevier, Amsterdam, The Netherlands, pp.
73
76
.
83.
Ge
,
N.
,
Chevalier
,
S.
,
Hinebaugh
,
J.
,
Yip
,
R.
,
Lee
,
J.
,
Antonacci
,
P.
,
Kotaka
,
T.
,
Tabuchi
,
Y.
, and
Bazylak
,
A.
,
2016
, “
Calibrating the X-Ray Attenuation of Liquid Water and Correcting Sample Movement Artefacts During in Operando Synchrotron X-Ray Radiographic Imaging of Polymer Electrolyte Membrane Fuel Cells
,”
J. Synchrotron Radiat.
,
23
(
2
), pp.
590
599
.
84.
Hinebaugh
,
J.
,
Challa
,
P. R.
, and
Bazylak
,
A.
,
2012
, “
Accounting for Low-Frequency Synchrotron X-Ray Beam Position Fluctuations for Dynamic Visualizations
,”
J. Synchrotron Radiat.
,
19
(
6
), pp.
994
1000
.
85.
Mason
,
T. J.
,
Millichamp
,
J.
,
Shearing
,
P. R.
, and
Brett
,
D. J. L.
,
2013
, “
A Study of the Effect of Compression on the Performance of Polymer Electrolyte Fuel Cells Using Electrochemical Impedance Spectroscopy and Dimensional Change Analysis
,”
Int. J. Hydrogen Energy
,
38
(
18
), pp.
7414
7422
.
86.
Sassin
,
M. B.
,
Garsany
,
Y.
,
Gould
,
B. D.
, and
Swider-Lyons
,
K.
,
2016
, “
Impact of Compressive Stress on MEA Pore Structure and Its Consequence on PEMFC Performance
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
F808
F815
.
87.
Zhou
,
Y.
,
Lin
,
G.
,
Shih
,
A. J.
, and
Hu
,
S. J.
,
2009
, “
Assembly Pressure and Membrane Swelling in PEM Fuel Cells
,”
J. Power Sources
,
192
(
2
), pp.
544
551
.
88.
Owejan
,
J. P.
,
Trabold
,
T. A.
, and
Mench
,
M. M.
,
2014
, “
Oxygen Transport Resistance Correlated to Liquid Water Saturation in the Gas Diffusion Layer of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
,
71
, pp.
585
592
.
89.
Owejan
,
J. P.
,
Gagliardo
,
J. J.
,
Sergi
,
J. M.
,
Kandlikar
,
S. G.
, and
Trabold
,
T. A.
,
2009
, “
Water Management Studies in PEM Fuel Cells—Part I: Fuel Cell Design and in Situ Water Distributions
,”
Int. J. Hydrogen Energy
,
34
(
8
), pp.
3436
3444
.
90.
Hui
,
L.
,
Yanghua
,
T.
,
Zhenwei
,
W.
,
Zheng
,
S.
,
Shaohong
,
W.
,
Datong
,
S.
,
Jianlu
,
Z.
,
Fatih
,
K.
,
Jiujun
,
Z.
,
Haijiang
,
W.
,
Zhongsheng
,
L.
,
Abouatallah
,
R.
, and
Mazza
,
A.
,
2008
, “
A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
178
(
1
), pp.
103
17
.
91.
Baker
,
D. R.
,
Caulk
,
D. A.
,
Neyerlin
,
K. C.
, and
Murphy
,
M. W.
,
2009
, “
Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods
,”
J. Electrochem. Soc.
,
156
(
9
), pp.
B991
B1003
.
92.
Owejan
,
J. P.
,
Owejan
,
J. E.
,
Gu
,
W.
,
Trabold
,
T. A.
,
Tighe
,
T. W.
, and
Mathias
,
M. F.
,
2010
, “
Water Transport Mechanisms in PEMFC Gas Diffusion Layers
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
B1456
B1464
.
93.
Weber
,
A. Z.
, and
Newman
,
J.
,
2005
, “
Effects of Microporous Layers in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
152
(
4
), pp.
A677
A688
.
94.
Lin
,
G.
, and
Nguyen
,
T. V.
,
2006
, “
A Two-Dimensional Two-Phase Model of a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
153
(
2
), pp.
A372
A382
.
You do not currently have access to this content.