This paper for inclusion in the special issue provides a brief synopsis of lithium-ion battery safety research efforts at the Naval Research Laboratory (NRL) and presents the viewpoint that lithium-ion battery safety is a growing research area for both academic and applied researchers. We quantify how the number of lithium-ion battery research efforts worldwide has plateaued while publications associated with the safety aspect of lithium-ion batteries are on a rapid incline. The safety challenge creates a unique research opportunity to not only understand basic phenomena but also enhance existing fielded system through advanced controls and prognostics. As the number of lithium-ion battery safety research contributions climbs, significant advancements will come in the area of modeling across multiple time and length scales. Additionally, the utility of in situ and in operando techniques, several performed by the NRL and our collaborators, will feed the data necessary to validate these models. Lithium-ion battery innovations are no longer tied to performance metrics alone, but are increasingly dependent on safety research to unlock their full potential. There is much work to be done.

References

1.
Choi
,
J. W.
, and
Aurbach
,
D.
,
2016
, “
Promise and Reality of Post-Lithium-Ion Batteries With High Energy Densities
,”
Nat. Rev. Mater.
,
1
, p.
16013
.
2.
Sapunkov, O., Pande, V., Khetan, A., Choomwattana, C., and Viswanathan, V.,
2015
, “
Quantifying the Promise of ‘Beyond’ Li–Ion Batteries
,”
Transl. Mater. Res.
,
2
(
4
), p.
045002
.
3.
Urry
,
A.
,
2017
, “
Inside the Race to Build the Battery of Tomorrow
,” WIRED, Boone, IA, accessed Feb. 22, 2017, https://www.wired.com/2017/02/researchers-racing-build-battery-future/
4.
Shah
,
K.
,
Balsara
,
N.
,
Banerjee
,
S.
,
Chintapalli
,
M.
,
Cocco
,
A. P.
,
Chiu
,
W. K. S.
,
Lahiri
,
I.
,
Martha
,
S.
,
Mistry
,
A.
,
Mukherjee
,
P. P.
,
Ramadesigan
,
V.
,
Sharma
,
C. S.
,
Subramanian
,
V. R.
,
Mitra
,
S.
, and
Jain
,
A.
,
2017
, “
State of the Art and Future Research Needs for Multiscale Analysis of Li-Ion Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
2
), p.
020801
.
5.
Abada
,
S.
,
Marbair
,
G.
,
Lecocq
,
A.
,
Petit
,
M.
,
Sauvant-Moynot
,
V.
, and
Huet
,
F.
,
2016
, “
Safety Focused Modeling of Lithium-Ion Batteries: A Review
,”
J. Power Sources
,
306
, pp.
178
192
.
6.
Braga
,
M. H.
,
Grundish
,
N. S.
,
Murchison
,
A. J.
, and
Goodenough
,
J. B.
,
2017
, “
Alternative Strategy for a Safe Rechargeable Battery
,”
Energy Environ. Sci.
,
10
(
1
), pp.
331
336
.
7.
Parker
,
J. F.
,
Chervin
,
C. N.
,
Pala
,
I. R.
,
Machler
,
M.
,
Burz
,
M. F.
,
Long
,
J. W.
, and
Rolison
,
D. R.
,
2017
, “
Rechargeable Nickel–3D Zinc Batteries: An Energy-Dense, Safer Alternative to Lithium-Ion
,”
Science
,
356
(
6336
), pp.
415
418
.
8.
Love
,
C. T.
,
Johannes
,
M. D.
, and
Swider-Lyons
,
K.
,
2010
, “
Thermal Stability of Delithiated Al-Substituted Li(Ni1/3Co1/3Mn1/3)O2 Cathodes
,”
ECS Trans.
,
25
(
36
), pp.
231
240
.
9.
Johannes
,
M. D.
,
Swider-Lyons
,
K.
, and
Love
,
C. T.
,
2016
, “
Oxygen Character in the Density of States as an Indicator of the Stability of Li-Ion Battery Cathode Materials
,”
Solid State Ionics
,
286
, pp.
83
89
.
10.
Love
,
C. T.
,
Dmowski
,
W.
,
Johannes
,
M. D.
, and
Swider-Lyons
,
K. E.
,
2011
, “
Structural Originations of Irreversible Capacity Loss From Highly Lithiated Copper Oxides
,”
J. Solid State Chem.
,
184
(
9
), pp.
2412
2419
.
11.
Love
,
C. T.
,
Baturina
,
O. A.
, and
Swider-Lyons
,
K. E.
,
2015
, “
Observation of Lithium Dendrites at Ambient Temperature and Below
,”
ECS Electrochem. Lett.
,
4
(
2
), pp.
A24
A27
.
12.
Love
,
C. T.
,
2016
, “
Perspective on the Mechanical Interaction Between Lithium Dendrites and Polymer Separators at Low Temperature
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031004
.
13.
Chen
,
C.-F.
,
Verma
,
A.
, and
Mukherjee
,
P. P.
,
2017
, “
Probing the Role of Electrode Microstructure in the Lithium-Ion Battery Thermal Behavior
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3146
E3158
.
14.
Love
,
C. T.
,
2011
, “
Thermomechanical Analysis and Durability of Commercial Micro-Porous Polymer Li-Ion Battery Separators
,”
J. Power Sources
,
196
(
5
), pp.
2905
2912
.
15.
Love
,
C. T.
, and
Swider-Lyons
,
K.
,
2012
, “
Impedance Diagnostic for Overcharged Lithium-Ion Batteries
,”
Electrochem. Solid State Lett.
,
15
(
4
), pp.
A53
A56
.
16.
Love
,
C. T.
,
Virji
,
M. B. V.
,
Rocheleau
,
R. E.
, and
Swider-Lyons
,
K. E.
,
2014
, “
State-of-Health Monitoring of 18650 4S Packs With a Single-Point Impedance Diagnostic
,”
J. Power Sources
,
266
, pp.
512
519
.
17.
Spinner
,
N. S.
,
Love
,
C. T.
,
Rose-Pehrsson
,
S. L.
, and
Tuttle
,
S. G.
,
2015
, “
Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-Ion Batteries
,”
Electrochim. Acta
,
174
, pp.
488
493
.
18.
Huhman
,
B. M.
,
Heinzel
,
J. M.
,
Mili
,
L.
,
Love
,
C. T.
, and
Wetz
,
D. A.
,
2017
, “
Investigation Into State-of-Health Impedance Diagnostic for 26650 4P1S Battery Packs
,”
J. Electrochem. Soc.
,
164
(
1
), pp.
A6401
A6411
.
19.
Beelen
,
H. P. G. J.
,
Raijmakers
,
L. H. J.
,
Donkers
,
M. C. F.
,
Notten
,
P. H. L.
, and
Bergveld
,
H. J.
,
2016
, “
A Comparison and Accuracy Analysis of Impedance-Based Temperature Estimation Methods for Li-Ion Batteries
,”
Appl. Energy
,
175
, pp.
128
140
.
You do not currently have access to this content.