Abstract

AgNiO2 is a semiconductor crystallizing in the delafossite structure; it is prepared by the hydrothermal route, and the photoelectrochemical properties are studied for the first time. The TG/DSC analyses show a low stability not exceeding 290 °C before its reduction into Ag and NiO. The direct bandgap energy of the bulk material is 0.87 eV, due to the d–d transition of Ag+ linearly coordinated. AgNiO2 is chemically stable in the pH region (4–14); a flat band potential of −0.022 VRHE with p-type behavior, inferred to oxygen insertion is reported in KOH solution (10−2 M). The holes density (1.92 × 1022 cm−3) agrees with a semi-metallic behavior. Positive potentials give rise to surface oxidation of AgNiO2 in the diffusion plateau before oxygen evolution. The electrochemical oxygen insertion, investigated by chrono-amperometry, is found to be slow with a diffusion coefficient of ∼8 × 10−16 cm2 s−1. The Nyquist plot exhibits a semicircle centered below the abscissa axis, whose diameter 4200 Ω cm2 decreases down to 760 Ω cm2 under visible illumination. Such results indicate dipolar and multi-relaxation processes and confirm the existence of the optical gap. The conduction band (−0.88 VRHE) derived from Ag+: 4d orbital is more cathodic than the potential of H2O/H2 (∼−0.64 VRHE) level and hydrogen is evolved under visible irradiation. An evolution rate of 1.43 mL g−1 min−1 at pH ∼ 12.8 is obtained with a light-to-chemical energy efficiency of 2.40%.

References

1.
Putri
,
L. K.
,
Tan
,
L. L.
,
Onga
,
W. J.
,
Chang
,
W. S.
, and
Chai
,
S. P.
,
2016
, “
Graphene Oxide: Exploiting Its Unique Properties Toward Visible-Light-Driven Photocatalysis
,”
Appl. Mater. Today
,
4
, pp.
9
6
. 10.1016/j.apmt.2016.04.001
2.
Surendar
,
M.
,
Sagar
,
T. V.
,
Raveendra
,
G.
,
Ashwani Kumar
,
M.
,
Lingaiah
,
N.
,
Rama Rao
,
K. S.
, and
Sai Prasad
,
P. S.
,
2016
, “
Pt Doped LaCoO3 Perovskite: A Precursor for a Highly Efficient Catalyst for Hydrogen Production From Glycerol
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
1
13
. 10.1016/j.ijhydene.2015.12.075
3.
Ketir
,
W.
,
Bouguelia
,
A.
, and
Trari
,
M.
,
2009
, “
NO3 Removal With a New Delafossite CuCrO2 Photocatalyst
,”
Desalination
,
244
(
1–3
), pp.
144
152
. 10.1016/j.desal.2008.05.020
4.
Bagtache
,
R.
,
Abdmeziem
,
K.
,
Dib
,
K.
, and
Trari
,
M.
,
2018
, “
Synthesis and Photoelectrochemical Characterization of KZn2(HPO4)PO4: Application to Rhodamine B Photodegradation Under Solar Light
,”
Int. J. Environ. Sci. Technol.
,
16
(
7
), pp.
3819
3828
. 10.1007/s13762-018-1883-8
5.
Benreguia
,
N.
,
Omeiri
,
S.
,
Bellal
,
B.
, and
Trari
,
M.
,
2011
, “
Visible Light Induced H2PO4 Removal Over CuAlO2 Catalyst
,”
J. Hazard. Mater.
,
192
(
3
), pp.
1395
1400
. 10.1016/j.jhazmat.2011.06.049
6.
Shin
,
Y. J.
,
Doumerc
,
J. P.
,
Dordor
,
P.
,
Delmas
,
C.
,
Pouchard
,
M.
, and
Hagenmuller
,
P.
,
1993
, “
Influence of the Preparation Method and Doping on the Magnetic and Electrical Properties of AgNiO2
,”
J. Solid State Chem.
,
107
(
2
), pp.
303
313
. 10.1006/jssc.1993.1352
7.
Azmat
,
M. A.
,
Afzal Khan
,
S.
,
Haider
,
K. T.
,
Ouahrani
,
G.
,
Murtaza
,
R.
,
Khenata
,
S.
, and
Omran
,
B.
,
2015
, “
First Principles Study of Cu Based Delafossite Transparent Conducting Oxides CuXO2 (X = Al, Ga, In, B, La, Sc, Y)
,”
Mater. Sci. Semicond. Process.
,
38
, pp.
57
66
. 10.1016/j.mssp.2015.03.038
8.
Chung
,
J. H.
,
Lim
,
J. H.
,
Shin
,
Y. J.
,
Kang
,
J. S.
,
Jaiswal-Nagar
,
D.
, and
Kim
,
K. H.
,
2008
, “
Possible Charge Disproportionation in 3R-AgNiO2 Studied by Neutron Powder Diffraction
,”
Phys. Rev. B
,
78
(
21
), pp.
214
417
. 10.1103/PhysRevB.78.214417
9.
Bagtache
,
R.
,
Abdmeziem
,
K.
,
Reghila
,
G.
, and
Trari
,
M.
,
2016
, “
Synthesis and Semiconducting Properties of Na2MnPO4F. Application to Degradation of Rhodamine B Under UV-Light
,”
Mater. Sci. Semicond. Process.
,
51
, pp.
1
7
. 10.1016/j.mssp.2016.04.016
10.
Belmokhtar
,
N.
,
Brahimi
,
R.
,
Nedjar
,
R.
, and
Trari
,
M.
,
2015
, “
Preparation and Physical Properties of the Layered Niobate Cu0.5Nb3O8: Application to Photocatalytic Hydrogen Evolution
,”
Mater. Sci. Semicond. Process.
,
39
, pp.
433
440
. 10.1016/j.mssp.2015.05.032
11.
Riveros
,
G.
,
Garín
,
C.
,
Ramírez
,
D.
,
Dalchiele
,
E. A.
, and
Ramos-Barrado
,
J. R.
,
2015
, “
Delafossite CuFeO2 Thin Films Electrochemically Grown From a DMSO Based Solution
,”
Electrochim. Acta
,
164
, pp.
297
306
. 10.1016/j.electacta.2015.02.226
12.
Jlaiel
,
F.
,
Elkhouni
,
T.
,
Amami
,
M.
,
Strobel
,
P.
, and
Ben Salah
,
A.
,
2013
, “
Structural and Physical Properties of the (Ca, Mg)-Doped Delafossite Powder CuGaO2
,”
Mater. Res. Bull.
,
48
(
3
), pp.
1020
1026
. 10.1016/j.materresbull.2012.11.103
13.
Butler
,
M. A.
, and
Ginley
,
D. S.
,
1978
, “
Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces From Atomic Electronegativities
,”
J. Electrochem. Soc.
,
125
(
2
), pp.
228
232
. 10.1149/1.2131419
14.
Fedailaine
,
M.
,
Bellal
,
B.
,
Berkani
,
S.
,
Trari
,
M.
, and
Abdi
,
A.
,
2016
, “
Photo-electrochemical Characterization of the Spinel CuFe2O4: Application to Ni2+ Removal Under Solar Light
,”
Environ. Process.
,
3
(
2
), pp.
387
396
. 10.1007/s40710-016-0142-6
15.
Shen
,
J.
,
Li
,
Y.
, and
He
,
J. H.
,
2016
, “
On the Kubelka-Munk Absorption Coefficient
,”
Dyes Pigm.
,
127
, pp.
187
188
. 10.1016/j.dyepig.2015.11.029
16.
Teung Chang
,
B.
,
Jakani
,
M.
,
Campet
,
G.
, and
Claverie
,
J.
,
1988
, “
Photoelectrochemical Study of a Spinel-Type Titanomagnetite
,”
J. Solid State Chem.
,
72
(
2
), pp.
201
208
. 10.1016/0022-4596(88)90023-0
17.
Charlot
,
G.
,
Machtinger
,
M.
, and
Rosset
,
R.
,
1976
,
Cours de Chimie Analytique Générale: Courbes de Titrage, Réaction Dans les Solvants, Méthodes électrochimiques, Méthodes Optiques
,
Masson
,
Paris
.
18.
Younsi
,
M.
,
Saadi
,
S.
,
Bouguelia
,
A.
,
Aider
,
A.
, and
Trari
,
M.
,
2007
, “
Synthesis and Characterization of Oxygen-Rich Delafossite CuYO2+x-Application to H2-Photo Production
,”
Sol. Energy Mater. Sol. Cells
,
91
(
12
), pp.
1102
1109
. 10.1016/j.solmat.2007.03.014
19.
Sanchez
,
R. D.
,
Torresi
,
R. M.
,
Rettori
,
C.
,
Oseroff
,
S.
, and
Fisk
,
Z.
,
1995
, “
Electrochemical Intercalation of O2− in La2CuO4 Single Crystals
,”
Electrochim. Acta
,
40
(
2
), pp.
209
212
. 10.1016/0013-4686(94)00283-7
20.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
,
Clarendon Press
,
Oxford
.
21.
Gerischer
,
H.
,
1980
, “
Photoassisted Interfacial Electron Transfer
,”
Surf. Sci.
,
101
(
1–3
), pp.
518
530
. 10.1016/0039-6028(80)90646-9
22.
Kchaou
,
H.
,
Karoui
,
K.
,
Khirouni
,
K.
, and
Ben Rhaiem
,
A.
,
2017
, “
Optical and Dielectric Relaxation of Transition Metal-Based Organic-Inorganic Hybrid Materials
,”
J. Alloys Comp.
,
728
, pp.
936
943
. 10.1016/j.jallcom.2017.09.079
You do not currently have access to this content.