Abstract

Battery thermal management has significant effect on the performance of electric vehicles (EVs) under high current rates. In this research, a comprehensive thermal analysis and multi-objective optimization design framework is proposed to enhance the thermal performance of a novel air–liquid cooling coupled battery pack under higher discharging rate (3C). Computational fluid dynamics (CFD) numerical calculation is utilized to compare the cooling efficiency of the battery pack designs. Furthermore, a surrogate model is generated by using Latin hypercube sampling (LHS) and support vector machine. The design parameters include different mini-channels’ mass flowrates and the air flow inlet velocity, the objectives are the temperature rise, temperature distribution, and the energy consumption. Sensitivity analysis results indicate that the air flow inlet velocity is the main factor affecting the temperature rise and temperature distribution, while the mass flowrates of mini-channels have important influence on the pressure drop. Finally, the nondominated sorting genetic algorithm-II (NSGA-II) is used to select the optimal battery pack design, the maximum temperature, and temperature standard deviation (TSD) get improved by 1.8 K and 0.06 K, respectively. And the energy consumption of the cooling system can be controlled within the appropriate range after optimization design.

References

1.
Zhao
,
J.
,
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Li
,
Y.
,
2015
, “
Thermal Management of Cylindrical Power Battery Module for Extending the Life of New Energy Electric Vehicles
,”
Appl. Therm. Eng.
,
85
, pp.
33
43
. 10.1016/j.applthermaleng.2015.04.012
2.
Yang
,
N.-X.
,
Zhang
,
X.-W.
, and
Li
,
G.-J.
,
2014
, “
Study of Heat Generation of a Lithium-Ion Battery During Discharge Cycle
,”
J. Eng. Thermophys.
,
35
(
9
), pp.
1850
1854
.
3.
Yi
,
J.
,
Kim
,
U. S.
,
Shin
,
C. B.
,
Han
,
T.
, and
Park
,
S.
,
2013
, “
Modeling the Temperature Dependence of the Discharge Behavior of a Lithium-Ion Battery in Low Environmental Temperature
,”
J. Power Sources
,
244
(
SI
), pp.
413
148
. 10.1016/j.jpowsour.2013.02.085
4.
Liu
,
Z.
,
Wang
,
Y.
,
Zhang
,
J.
, and
Liu
,
Z.
,
2014
, “
Shortcut Computation for the Thermal Management of a Large Air-Cooled Battery Pack
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
445
452
. 10.1016/j.applthermaleng.2014.02.040
5.
Jeon
,
D. H.
, and
Baek
,
S. M.
,
2011
, “
Thermal Modeling of Cylindrical Lithium Ion Battery During Discharge Cycle
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2973
2981
. 10.1016/j.enconman.2011.04.013
6.
Wang
,
T.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2015
, “
Development of Efficient Air-Cooling Strategies for Lithium-Ion Battery Module Based on Empirical Heat Source Model
,”
Appl. Therm. Eng.
,
90
, pp.
521
529
. 10.1016/j.applthermaleng.2015.07.033
7.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
. 10.1016/j.applthermaleng.2015.01.049
8.
Tong
,
W.
,
Somasundaram
,
K.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2016
, “
Thermo-Electrochemical Model for Forced Convection Air Cooling of a Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
99
, pp.
672
682
. 10.1016/j.applthermaleng.2016.01.050
9.
Tran
,
T.-H.
,
Harmand
,
S.
,
Desmet
,
B.
, and
Filangi
,
S.
,
2014
, “
Experimental Investigation on the Feasibility of Heat Pipe Cooling for HEV/EV Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
551
558
. 10.1016/j.applthermaleng.2013.11.048
10.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling
,”
Appl. Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
11.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
. 10.1016/j.jpowsour.2013.03.102
12.
Huang
,
Q.
,
Li
,
X.
,
Zhang
,
G.
,
Zhang
,
J.
,
He
,
F.
, and
Li
,
Y.
,
2018
, “
Experimental Investigation of the Thermal Performance of Heat Pipe Assisted Phase Change Material for Battery Thermal Management System
,”
Appl. Therm. Eng.
,
141
, pp.
1092
1100
. 10.1016/j.applthermaleng.2018.06.048
13.
Xiongbin
,
Peng
,
Siqi
,
Chen
,
Akhil
,
Garg
, and
Nengsheng
,
Bao
,
2019
, “
A Review of the Estimation and Heating Methods for Lithium-Ion Batteries Pack at the Cold Environment
,”
Ener. Sci. Eng.
,
7
(
3
), pp.
645
662
. 10.1002/ese3.279
14.
Yihui
,
Zhang
,
Siqi
,
Chen
,
Me
,
Shahin
,
Xiaodong
,
Niu
,
Liang
,
Gao
,
C. M. M.
,
Chin
,
Nengsheng
,
Bao
,
Chin-Tsan
,
Wang
,
Akhil
,
Garg
, and
Ankit
,
Goyal
,
2020
, “
Multi‐Objective Optimization of Lithium‐Ion Battery Pack Casing for Electric Vehicles Key Role of Materials Design and Their Influence
,”
Int. J. Energy Res.
,
44
(
12
), pp.
9414
9437
. 10.1002/er.4965
15.
Van Gils
,
R. W.
,
Danilov
,
D.
,
Notten
,
P. H. L.
,
Speetjens
,
M. F. M.
, and
Nijmeijer
,
H.
,
2014
, “
Battery Thermal Management by Boiling Heat-Transfer
,”
Energy Convers. Manage.
,
79
, pp.
9
17
. 10.1016/j.enconman.2013.12.006
16.
Chen
,
S.
,
Bao
,
N.
,
Gao
,
L.
,
Peng
,
X.
, and
Garg
,
A.
,
2020
, “
An Experimental Investigation of Liquid Cooling Scheduling for a Battery Module
,”
Int. J. Energy Res.
,
44
(
4
), pp.
3020
3032
. 10.1002/er.5132
17.
Chen
,
S.
,
Bao
,
N.
,
Peng
,
X.
,
Garg
,
A.
, and
Chen
,
Z.
,
2020
, “
A Thermal Design and Experimental Investigation for the Fast Charging Process of a Lithium-Ion Battery Module With Liquid Cooling
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021109
. 10.1115/1.4045324
18.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
. 10.1016/j.jpowsour.2011.06.090
19.
Liu
,
F.-F.
,
Lan
,
F.-C.
,
Chen
,
J.-Q.
, and
Li
,
Y.-G.
,
2018
, “
Experimental Investigation on Cooling/Heating Characteristics of Ultra-Thin Micro Heat Pipe for Electric Vehicle Battery Thermal Management
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
10
. 10.1186/s10033-018-0255-0
20.
Kizilel
,
R.
,
Lateef
,
A.
,
Sabbah
,
R.
,
Farid
,
M. M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2008
, “
Passive Control of Temperature Excursion and Uniformity in High-Energy Li-Ion Battery Packs at High Current and Ambient Temperature
,”
J. Power Sources
,
183
(
1
), pp.
370
375
. 10.1016/j.jpowsour.2008.04.050
21.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
. 10.1016/j.apenergy.2015.03.080
22.
Smith
,
J.
,
Hinterberger
,
M.
,
Hable
,
P.
, and
Koehler
,
J.
,
2014
, “
Simulative Method for Determining the Optimal Operating Conditions for a Cooling Plate for Lithium-Ion Battery Cell
,”
J. Power Sources
,
267
, pp.
784
792
. 10.1016/j.jpowsour.2014.06.001
23.
Chen
,
S.
,
Peng
,
X.
,
Bao
,
N.
, and
Garg
,
A.
,
2019
, “
A Comprehensive Analysis and Optimization Process for an Integrated Liquid Cooling Plate for a Prismatic Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
156
, pp.
324
339
. 10.1016/j.applthermaleng.2019.04.089
24.
Kim
,
N.-H.
,
Ham
,
J.-H.
, and
Ch
,
J.-P.
,
2008
, “
Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Herringbone Wave Fins and Proposal of a New Heat Transfer and Pressure Drop Correlation
,”
J. Mech. Sci. Technol.
,
22
(
3
), pp.
545
555
. 10.1007/s12206-007-1116-4
25.
Wongwises
,
S.
, and
Chokeman
,
Y.
,
2004
, “
Effect of Fin Thickness on Air-Side Performance of Herringbone Wavy Fin-and-Tube Heat Exchangers
,”
Heat Mass Transfer
,
41
(
2
), pp.
147
154
. 10.1007/s00231-004-0507-7
26.
Rao
,
Z.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
. 10.1016/j.applthermaleng.2017.06.059
27.
Yu
,
G.
,
Zhang
,
X.
,
Wang
,
C.
,
Zhang
,
W.
, and
Yang
,
C.
,
2013
, “
Convective Dimensionless Method for Measurement of Heat Generation in a Lithium Thionyl Chloride Battery
,”
J. Electrochem. Soc.
,
160
(
11
), pp.
A2027
A2032
. 10.1149/2.041311jes
28.
Chen
,
K.
,
Wang
,
S.
,
Song
,
M.
, and
Chen
,
L.
,
2017
, “
Configuration Optimization of Battery Pack in Parallel Air-Cooled Battery Thermal Management System Using an Optimization Strategy
,”
Appl. Therm. Eng.
,
123
, pp.
177
186
. 10.1016/j.applthermaleng.2017.05.060
29.
Navid
,
A.
,
Khalilarya
,
S.
, and
Abbasi
,
M.
,
2018
, “
Diesel Engine Optimization With Multi-Objective Performance Characteristics by Non-Evolutionary Nelder-Mead Algorithm: Sobol Sequence and Latin Hypercube Sampling Methods Comparison in DoE Process
,”
Fuel
,
228
, pp.
349
367
. 10.1016/j.fuel.2018.04.142
You do not currently have access to this content.