Abstract

We explore the effect of Mo doping over the large enhancement of electrochemical property of Mo-doped SnO2 quantum dots (3–5 nm) grown over rGO (reduced graphene oxide) sheets by a soft chemical process in ambient conditions. The composites were prepared over a range of Mo doping concentrations (0–10%) and 5% Mo doping had achieved the best energy storage characteristics. The capacity of the active material could reach ∼851 mAh g−1 (@ 78 mA g−1) in the beginning and that retained ∼89% (∼758 mAh g−1) with superior cyclic stability (100 cycles) and rate capability (506 mAh g−1 @ ∼1.5 A g−1). The addition of the reductant of 0.06 mol during the synthesis procedure led to further improvement of the capacity to ∼875 mAh g−1 (∼92% retention) and the rate capability (∼587 mAh g−1). These impressive results are ascribed to the distribution of Mo-doped SnO2 QDs, doping of Mo6+ at Sn4+ lattice sites providing more electrons for easy electrical transport, reduction of GO (graphene oxide) to rGO. Mo doping led to the decline in the charge transfer resistance (Rct) from 14.99 Ω for un-doped SnO2/rGO to 14.09 Ω (2.5%), 11.61 Ω (5%), and 11.4 Ω (10%) and promote the electrochemical property of the composite. A simple room-temperature synthesis process was used to produce Mo-doped SnO2/rGO nanocomposite and can be employed for the production of many other oxides and their composites for interesting applications.

References

1.
Reddy
,
M.
,
Subba Rao
,
G.
, and
Chowdari
,
B.
,
2013
, “
Metal Oxides and Oxysalts as Anode Materials for Li ion Batteries
,”
Chem. Rev.
,
113
(
7
), pp.
5364
5457
.
2.
Ren
,
Y.
,
Ko
,
J. S.
,
Kasse
,
R. M.
,
Song
,
X.
,
Toney
,
M. F.
, and
Nelson Weker
,
J.
,
2020
, “
Hybrid Nanostructured Ni(OH)2/NiO for High-Capacity Lithium-Ion Battery Anodes
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
4
), p.
041009
.
3.
Li
,
Y.
,
Huang
,
Y.
,
Wang
,
X.
,
Liu
,
W.
,
Yu
,
K.
, and
Liang
,
C.
,
2020
, “
Simple Synthesis of Rice Husk Hollow Carbon-Coated Flower ZnO for the Anode in a High Performance Lithium-ion Battery
,”
J. Phys. Chem. Solids
,
145
, p.
109540
.
4.
Ishii
,
Y.
,
Kanamori
,
Y.
,
Kawashita
,
T.
,
Mukhopadhyay
,
I.
, and
Kawasaki
,
S.
,
2010
, “
Mesoporous Carbon–Titania Nanocomposites for High-Power Li-Ion Battery Anode Material
,”
J. Phys. Chem. Solids
,
71
(
4
), pp.
511
514
.
5.
Bae
,
J.
,
Han
,
H.
,
Kim
,
Y.
,
Ahn
,
H.
,
Kim
,
M.
, and
Kim
,
W. B.
,
2020
, “
Surfactant–Controlled Synthesis of Polygonal-Stacked Cu2O for Morphology Effect on Lithium-Ion Battery Anode Performance
,”
J. Phys. Chem. Solids
,
150
, p.
109849
.
6.
Tan
,
Q.
,
Kong
,
Z.
,
Chen
,
X.
,
Zhang
,
L.
,
Hu
,
X.
,
Mu
,
M.
,
Sun
,
H.
,
Shao
,
X.
,
Guan
,
X.
, and
Gao
,
M.
,
2019
, “
Synthesis of SnO2/Graphene Composite Anode Materials for Lithium-Ion Batteries
,”
Appl. Surf. Sci.
,
485
, pp.
314
322
.
7.
Namsar
,
O.
,
Autthawong
,
T.
,
Laokawee
,
V.
,
Boonprachai
,
R.
,
Haruta
,
M.
,
Kurata
,
H.
,
Yu
,
A.
,
Chairuangsri
,
T.
, and
Sarakonsri
,
T.
,
2020
, “
Improved Electrochemical Performance of Anode Materials for High Energy Density Lithium-ion Batteries Through Sn (SnO2)–SiO2/Graphene-Based Nanocomposites Prepared by a Facile and Low-Cost Approach
,”
Sustainable Energy Fuels
,
4
(
9
), pp.
4625
4636
.
8.
Lu
,
Z.
,
Kong
,
Z.
,
Jing
,
L.
,
Wang
,
T.
,
Liu
,
X.
,
Fu
,
A.
,
Guo
,
P.
,
Guo
,
Y.-G.
, and
Li
,
H.
,
2020
, “
Porous SnO2/Graphene Composites as Anode Materials for Lithium-Ion Batteries: Morphology Control and Performance Improvement
,”
Energy Fuels
,
34
(
10
), pp.
13126
13136
.
9.
Liang
,
S.
,
Yu
,
K.
,
Li
,
Y.
, and
Liang
,
C.
,
2020
, “
Rice Husk-Derived Carbon@ SnO2@ Graphene Anode with Stable Electrochemical Performance Used in Lithium-Ion Batteries
,”
Mater. Res. Express
,
7
(
1
), p.
015021
.
10.
Jiang
,
S.
,
Huang
,
R.
,
Zhu
,
W.
,
Li
,
X.
,
Zhao
,
Y.
,
Gao
,
Z.
,
Gao
,
L.
, and
Zhao
,
J.
,
2019
, “
Free-Standing SnO2@ rGO Anode via the Anti-Solvent-Assisted Precipitation for Superior Lithium Storage Performance
,”
Front. Chem.
,
7
, p.
878
.
11.
Guo
,
J.
,
Li
,
P.
,
Chai
,
L.
,
Su
,
Y.
,
Diao
,
J.
, and
Guo
,
X.
,
2017
, “
Silica Template-Assisted Synthesis of SnO2@ Porous Carbon Composites as Anode Materials with Excellent Rate Capability and Cycling Stability for Lithium-Ion Batteries
,”
RSC Adv.
,
7
(
48
), pp.
30070
30079
.
12.
Gao
,
S.
,
Wang
,
N.
,
Li
,
S.
,
Li
,
D.
,
Cui
,
Z.
,
Yue
,
G.
,
Liu
,
J.
,
Zhao
,
X.
,
Jiang
,
L.
, and
Zhao
,
Y.
,
2020
, “
A Multi-Wall Sn/SnO2@ Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries
,”
Angew. Chem.
,
132
(
6
), pp.
2486
2493
.
13.
Tran
,
Q. N.
,
Kim
,
I. T.
,
Park
,
S.
,
Choi
,
H. W.
, and
Park
,
S. J.
,
2020
, “
SnO2 Nanoflower–Nanocrystalline Cellulose Composites as Anode Materials for Lithium-Ion Batteries
,”
Materials
,
13
(
14
), p.
3165
.
14.
Liu
,
X.
,
Teng
,
D.
,
Li
,
T.
,
Yu
,
Y.
,
Shao
,
X.
, and
Yang
,
X.
,
2014
, “
Phosphorus-Doped tin Oxides/Carbon Nanofibers Webs as Lithium-Ion Battery Anodes with Enhanced Reversible Capacity
,”
J. Power Sources
,
272
, pp.
614
621
.
15.
Sun
,
J.
,
Xiao
,
L.
,
Jiang
,
S.
,
Li
,
G.
,
Huang
,
Y.
, and
Geng
,
J.
,
2015
, “
Fluorine-Doped SnO2@ Graphene Porous Composite for High Capacity Lithium-Ion Batteries
,”
Chem. Mater.
,
27
(
13
), pp.
4594
4603
.
16.
Xu
,
H.
,
Shi
,
L.
,
Wang
,
Z.
,
Liu
,
J.
,
Zhu
,
J.
,
Zhao
,
Y.
,
Zhang
,
M.
, and
Yuan
,
S.
,
2015
, “
Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium ion Battery Anode Material with High Capacity and Cycling Stability
,”
ACS Appl. Mater. Interfaces
,
7
(
49
), pp.
27486
27493
.
17.
Wang
,
L. P.
,
Leconte
,
Y.
,
Feng
,
Z.
,
Wei
,
C.
,
Zhao
,
Y.
,
Ma
,
Q.
,
Xu
,
W.
,
Bourrioux
,
S.
,
Azais
,
P.
, and
Srinivasan
,
M.
,
2017
, “
Novel Preparation of N-Doped SnO2 Nanoparticles via Laser-Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties
,”
Adv. Mater.
,
29
(
6
), p.
1603286
.
18.
Wang
,
S.
,
Shi
,
L.
,
Chen
,
G.
,
Ba
,
C.
,
Wang
,
Z.
,
Zhu
,
J.
,
Zhao
,
Y.
,
Zhang
,
M.
, and
Yuan
,
S.
,
2017
, “
In Situ Synthesis of Tungsten-Doped SnO2 and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
20
), pp.
17163
17171
.
19.
Yan
,
Y.
,
Du
,
F.
,
Shen
,
X.
,
Ji
,
Z.
,
Sheng
,
X.
,
Zhou
,
H.
, and
Zhu
,
G.
,
2014
, “
Large-Scale Facile Synthesis of Fe-Doped SnO 2 Porous Hierarchical Nanostructures and Their Enhanced Lithium Storage Properties
,”
J. Mater. Chem. A
,
2
(
38
), pp.
15875
15882
.
20.
Mueller
,
F.
,
Bresser
,
D.
,
Chakravadhanula
,
V. S. K.
, and
Passerini
,
S.
,
2015
, “
Fe-Doped SnO2 Nanoparticles as New High Capacity Anode Material for Secondary Lithium-ion Batteries
,”
J. Power Sources
,
299
, pp.
398
402
.
21.
Wang
,
J.
,
Wang
,
L.
,
Zhang
,
S.
,
Liang
,
S.
,
Liang
,
X.
,
Huang
,
H.
,
Zhou
,
W.
, and
Guo
,
J.
,
2018
, “
Facile Synthesis of Iron-Doped SnO2/Reduced Graphene Oxide Composite as High-Performance Anode Material for Lithium-Ion Batteries
,”
J. Alloys Compd.
,
748
, pp.
1013
1021
.
22.
Ye
,
X.
,
Zhang
,
W.
,
Liu
,
Q.
,
Wang
,
S.
,
Yang
,
Y.
, and
Wei
,
H.
,
2015
, “
One-step Synthesis of Ni-Doped SnO2 Nanospheres with Enhanced Lithium Ion Storage Performance
,”
New J. Chem.
,
39
(
1
), pp.
130
135
.
23.
Liu
,
Y.
,
Palmieri
,
A.
,
He
,
J.
,
Meng
,
Y.
,
Beauregard
,
N.
,
Suib
,
S. L.
, and
Mustain
,
W. E.
,
2016
, “
Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance
,”
Sci. Rep
,
6
(
1
), p.
25860
.
24.
Wang
,
X.
,
Li
,
Z.
,
Zhang
,
Z.
,
Li
,
Q.
,
Guo
,
E.
,
Wang
,
C.
, and
Yin
,
L.
,
2015
, “
Mo-Doped SnO2 Mesoporous Hollow Structured Spheres as Anode Materials for High-Performance Lithium Ion Batteries
,”
Nanoscale
,
7
(
8
), pp.
3604
3613
.
25.
Chen
,
Y.
,
Ge
,
D.
,
Zhang
,
J.
,
Chu
,
R.
,
Zheng
,
J.
,
Wu
,
C.
,
Zeng
,
Y.
,
Zhang
,
Y.
, and
Guo
,
H.
,
2018
, “
Ultrafine Mo-Doped SnO2 Nanostructure and Derivative Mo-Doped Sn/C Nanofibers for High-Performance Lithium-Ion Batteries
,”
Nanoscale
,
10
(
36
), pp.
17378
17387
.
26.
Chen
,
J.
,
Yao
,
B.
,
Li
,
C.
, and
Shi
,
G.
,
2013
, “
An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide
,”
Carbon
,
64
, pp.
225
229
.
27.
Shannon
,
R. D.
,
1976
, “
Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides
,”
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
,
32
(
5
), pp.
751
767
.
28.
Huang
,
H.-H.
,
De Silva
,
K. K. H.
,
Kumara
,
G.
, and
Yoshimura
,
M.
,
2018
, “
Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide
,”
Sci. Rep.
,
8
(
1
), pp.
1
9
.
29.
Liu
,
L.
,
An
,
M.
,
Yang
,
P.
, and
Zhang
,
J.
,
2015
, “
Superior Cycle Performance and High Reversible Capacity of SnO2/Graphene Composite as an Anode Material for Lithium-Ion Batteries
,”
Sci. Rep
,
5
(
1
), pp.
1
10
.
30.
Liu
,
X.
,
Zhong
,
X.
,
Yang
,
Z.
,
Pan
,
F.
,
Gu
,
L.
, and
Yu
,
Y.
,
2015
, “
Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-Ion Batteries
,”
Electrochim Acta
,
152
, pp.
178
186
.
31.
Park
,
S.-K.
,
Jin
,
A.
,
Yu
,
S.-H.
,
Ha
,
J.
,
Jang
,
B.
,
Bong
,
S.
,
Woo
,
S.
,
Sung
,
Y.-E.
, and
Piao
,
Y.
,
2014
, “
In Situ Hydrothermal Synthesis of Mn3O4 Nanoparticles on Nitrogen-Doped Graphene as High-Performance Anode Materials for Lithium Ion Batteries
,”
Electrochim Acta
,
120
, pp.
452
459
.
You do not currently have access to this content.