Abstract

The constant voltage cold start of the proton exchange membrane fuel cell (PEMFC) is usually operated at a low start-voltage in order to ensure high heat generation, which can shorten the process of the PEMFC cold start. However, the effect of constant voltage cold start on the durability of PEMFC is still unclear. Thus, in this work, the PEMFC is tested repeatedly at a low start-voltage to simulate its actual operating state in the vehicle. Then, the effect of the PEMFC durability under constant voltage cold start is investigated by polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy, transmission electron microscope, and ion chromatography. After the repeatedly cold start, the output performance of the PEMFC decreases significantly. According to the characterization results, the degradation mechanism of the PEMFC at the constant voltage cold start is demonstrated to be that the PEMFC start-up repeatedly at low start-voltage leads to the decomposition of membrane polymer structure and promotes the crossover of H2. Meanwhile, the PEMFC start-up repeatedly at low start-voltage also leads to the agglomeration of catalysts, which reduces the active area of catalysts and ultimately results in the degradation of fuel cell performance. Above all, this study proves that the durability of PEMFC can be shortened by the constant voltage cold start at 0.1 V, which provides a reference for the development of the PEMFC cold start control strategy.

References

1.
Gurz
,
M.
,
Baltacioglu
,
E.
,
Hames
,
Y.
, and
Kaya
,
K.
,
2017
, “
The Meeting of Hydrogen and Automotive: A Review
,”
Int. J. Hydrogen Energy
,
42
(
36
), pp.
23334
23346
.
2.
Amamou
,
A.
,
Kandidayeni
,
M.
,
Macias
,
A.
,
Boulon
,
L.
, and
Kelouwani
,
S.
,
2020
, “
Efficient Model Selection for Real-Time Adaptive Cold Start Strategy of a Fuel Cell System on Vehicular Applications
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19664
19675
.
3.
Li
,
L.
,
Wang
,
S.
,
Yue
,
L.
, and
Wang
,
G.
,
2019
, “
Cold-Start Icing Characteristics of Proton-Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
12033
12042
.
4.
Zhou
,
Y.
,
Luo
,
Y.
,
Yu
,
S.
, and
Jiao
,
K.
,
2014
, “
Modeling of Cold Start Processes and Performance Optimization for Proton Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
247
, pp.
738
748
.
5.
Mao
,
L.
, and
Wang
,
C.-Y.
,
2007
, “
Analysis of Cold Start in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
154
(
2
), pp.
B139
B146
.
6.
Hirakata
,
S.
,
Mochizuki
,
T.
,
Uchida
,
M.
,
Uchida
,
H.
, and
Watanabe
,
M.
,
2013
, “
Investigation of the Effect of Pore Diameter of Gas Diffusion Layers on Cold Start Behavior and Cell Performance of Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
108
, pp.
304
312
.
7.
Mishler
,
J.
,
Wang
,
Y.
,
Mukherjee
,
P. P.
,
Mukundan
,
R.
, and
Borup
,
R. L.
,
2012
, “
Subfreezing Operation of Polymer Electrolyte Fuel Cells: Ice Formation and Cell Performance Loss
,”
Electrochim. Acta
,
65
, pp.
127
133
.
8.
Tajiri
,
K.
,
Tabuchi
,
Y.
,
Kagami
,
F.
,
Takahashi
,
S.
,
Yoshizawa
,
K.
, and
Wang
,
C.-Y.
,
2007
, “
Effects of Operating and Design Parameters on PEFC Cold Start
,”
J. Power Sources
,
165
(
1
), pp.
279
286
.
9.
Jiao
,
K.
,
Alaefour
,
I. E.
,
Karimi
,
G.
, and
Li
,
X.
,
2011
, “
Cold Start Characteristics of Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
11832
11845
.
10.
Tabe
,
Y.
,
Saito
,
M.
,
Fukui
,
K.
, and
Chikahisa
,
T.
,
2012
, “
Cold Start Characteristics and Freezing Mechanism Dependence on Start-Up Temperature in a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
208
, pp.
366
373
.
11.
Lin
,
R.
,
Lin
,
X.
,
Weng
,
Y.
, and
Ren
,
Y.
,
2015
, “
Evolution of Thermal Drifting During and After Cold Start of Proton Exchange Membrane Fuel Cell by Segmented Cell Technology
,”
Int. J. Hydrogen Energy
,
40
(
23
), pp.
7370
7381
.
12.
Yan
,
Q.
,
Toghiani
,
H.
,
Lee
,
Y.-W.
,
Liang
,
K.
, and
Causey
,
H.
,
2006
, “
Effect of Sub-Freezing Temperatures on a PEM Fuel Cell Performance, Startup and Fuel Cell Components
,”
J. Power Sources
,
160
(
2
), pp.
1242
1250
.
13.
Oberholzer
,
P.
,
Boillat
,
P.
,
Siegrist
,
R.
,
Perego
,
R.
,
Kästner
,
A.
,
Lehmann
,
E.
,
Scherer
,
G. G.
, and
Wokaun
,
A.
,
2011
, “
Cold-Start of a PEFC Visualized With High Resolution Dynamic In-Plane Neutron Imaging
,”
J. Electrochem. Soc.
,
159
(
2
), pp.
B235
B245
.
14.
Ko
,
J.
, and
Ju
,
H.
,
2013
, “
Effects of Cathode Catalyst Layer Design Parameters on Cold Start Behavior of Polymer Electrolyte Fuel Cells (PEFCs)
,”
Int. J. Hydrogen Energy
,
38
(
1
), pp.
682
691
.
15.
Jung
,
H.-M.
, and
Um
,
S.
,
2011
, “
An Experimental Feasibility Study of Vanadium Oxide Films on Metallic Bipolar Plates for the Cold Start Enhancement of Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
36
(
24
), pp.
15826
15837
.
16.
Luo
,
Y.
,
Guo
,
Q.
,
Du
,
Q.
,
Yin
,
Y.
, and
Jiao
,
K.
,
2013
, “
Analysis of Cold Start Processes in Proton Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
224
, pp.
99
114
.
17.
Miao
,
Z.
,
Yu
,
H.
,
Song
,
W.
,
Hao
,
L.
,
Shao
,
Z.
,
Shen
,
Q.
,
Hou
,
J.
, and
Yi
,
B.
,
2010
, “
Characteristics of Proton Exchange Membrane Fuel Cells Cold Start With Silica in Cathode Catalyst Layers
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5552
5557
.
18.
Meng
,
H.
,
2008
, “
A PEM Fuel Cell Model for Cold-Start Simulations
,”
J. Power Sources
,
178
(
1
), pp.
141
150
.
19.
Lim
,
S.-J.
,
Park
,
G.-G.
,
Park
,
J.-S.
,
Sohn
,
Y.-J.
,
Yim
,
S.-D.
,
Yang
,
T.-H.
,
Hong
,
B. K.
, and
Kim
,
C.-S.
,
2010
, “
Investigation of Freeze/Thaw Durability in Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
23
), pp.
13111
13117
.
20.
Jiao
,
K.
,
Alaefour
,
I. E.
,
Karimi
,
G.
, and
Li
,
X.
,
2011
, “
Simultaneous Measurement of Current and Temperature Distributions in a Proton Exchange Membrane Fuel Cell During Cold Start Processes
,”
Electrochim. Acta
,
56
(
8
), pp.
2967
2982
.
21.
Lin
,
R.
,
Weng
,
Y.
,
Lin
,
X.
, and
Xiong
,
F.
,
2014
, “
Rapid Cold Start of Proton Exchange Membrane Fuel Cells by the Printed Circuit Board Technology
,”
Int. J. Hydrogen Energy
,
39
(
32
), pp.
18369
18378
.
22.
Blackwelder
,
M. J.
, and
Dougal
,
R. A.
,
2004
, “
Power Coordination in a Fuel Cell-Battery Hybrid Power Source Using Commercial Power Controller Circuits
,”
J. Power Sources
,
134
(
1
), pp.
139
147
.
23.
Thounthong
,
P.
,
Raël
,
S.
, and
Davat
,
B.
,
2006
, “
Control Strategy of Fuel Cell/Supercapacitors Hybrid Power Sources for Electric Vehicle
,”
J. Power Sources
,
158
(
1
), pp.
806
814
.
24.
Oszcipok
,
M.
,
Zedda
,
M.
,
Hesselmann
,
J.
,
Huppmann
,
M.
,
Wodrich
,
M.
,
Junghardt
,
M.
, and
Hebling
,
C.
,
2006
, “
Portable Proton Exchange Membrane Fuel-Cell Systems for Outdoor Applications
,”
J. Power Sources
,
157
(
2
), pp.
666
673
.
25.
Schießwohl
,
E.
,
von Unwerth
,
T.
,
Seyfried
,
F.
, and
Brüggemann
,
D.
,
2009
, “
Experimental Investigation of Parameters Influencing the Freeze Start Ability of a Fuel Cell System
,”
J. Power Sources
,
193
(
1
), pp.
107
115
.
26.
Jiao
,
K.
, and
Li
,
X.
,
2010
, “
Cold Start Analysis of Polymer Electrolyte Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
5077
5094
.
27.
Henao
,
N.
,
Kelouwani
,
S.
,
Agbossou
,
K.
, and
Dubé
,
Y.
,
2012
, “
Proton Exchange Membrane Fuel Cells Cold Startup Global Strategy for Fuel Cell Plug-In Hybrid Electric Vehicle
,”
J. Power Sources
,
220
, pp.
31
41
.
28.
Hwang
,
G. S.
,
Kim
,
H.
,
Lujan
,
R.
,
Mukundan
,
R.
,
Spernjak
,
D.
,
Borup
,
R. L.
,
Kaviany
,
M.
,
Kim
,
M. H.
, and
Weber
,
A. Z.
,
2013
, “
Phase-Change-Related Degradation of Catalyst Layers in Proton-Exchange-Membrane Fuel Cells
,”
Electrochim. Acta
,
95
, pp.
29
37
.
29.
Alink
,
R.
,
Gerteisen
,
D.
, and
Oszcipok
,
M.
,
2008
, “
Degradation Effects in Polymer Electrolyte Membrane Fuel Cell Stacks by Sub-Zero Operation—An In Situ and Ex Situ Analysis
,”
J. Power Sources
,
182
(
1
), pp.
175
187
.
30.
Lee
,
S.-Y.
,
Kim
,
H.-J.
,
Cho
,
E.
,
Lee
,
K.-S.
,
Lim
,
T.-H.
,
Hwang
,
I. C.
, and
Jang
,
J. H.
,
2010
, “
Performance Degradation and Microstructure Changes in Freeze–Thaw Cycling for PEMFC MEAs With Various Initial Microstructures
,”
Int. J. Hydrogen Energy
,
35
(
23
), pp.
12888
12896
.
31.
Oszcipok
,
M.
,
Riemann
,
D.
,
Kronenwett
,
U.
,
Kreideweis
,
M.
, and
Zedda
,
M.
,
2005
, “
Statistic Analysis of Operational Influences on the Cold Start Behaviour of PEM Fuel Cells
,”
J. Power Sources
,
145
(
2
), pp.
407
415
.
32.
Lin
,
R.
,
Zhu
,
Y.
,
Ni
,
M.
,
Jiang
,
Z.
,
Lou
,
D.
,
Han
,
L.
, and
Zhong
,
D.
,
2019
, “
Consistency Analysis of Polymer Electrolyte Membrane Fuel Cell Stack During Cold Start
,”
Appl. Energy
,
241
, pp.
420
432
.
33.
Hishinuma
,
Y.
,
Chikahisa
,
T.
,
Kagami
,
F.
, and
Ogawa
,
T.
,
2004
, “
The Design and Performance of a PEFC at a Temperature Below Freezing
,”
JSME Int. J. Ser. B
,
47
(
2
), pp.
235
241
.
34.
Génevé
,
T.
,
Turpin
,
C.
,
Régnier
,
J.
,
Rallières
,
O.
,
Verdu
,
O.
,
Rakotondrainibe
,
A.
, and
Lombard
,
K.
,
2017
, “
Voltammetric Methods for Hydrogen Crossover Diagnosis in a PEMFC Stack
,”
Fuel Cells
,
17
(
2
), pp.
210
216
.
35.
Francia
,
C.
,
Ijeri
,
V. S.
,
Specchia
,
S.
, and
Spinelli
,
P.
,
2011
, “
Estimation of Hydrogen Crossover Through Nafion® Membranes in PEMFCs
,”
J. Power Sources
,
196
(
4
), pp.
1833
1839
.
36.
Arato
,
E.
, and
Costa
,
P.
,
2006
, “
Transport Mechanisms and Voltage Losses in PEMFC Membranes and at Electrodes: A Discussion of Open-Circuit Irreversibility
,”
J. Power Sources
,
159
(
2
), pp.
861
868
.
37.
Wilson
,
M. S.
,
Garzon
,
F. H.
,
Sickafus
,
K. E.
, and
Gottesfeld
,
S.
,
1993
, “
Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
10
), pp.
2872
2877
.
You do not currently have access to this content.