To both increase the power density of a tubular solid oxide fuel cell (SOFC) and maintain its beneficial feature of secure sealing, a flat-tube high power density (HPD) solid oxide fuel cell is under development by Siemens Westinghouse, based on their formerly developed tubular model. In this paper, a three dimensional numerical model to simulate the steady state heat transfer and fluid flow of a flat-tube HPD–SOFC is developed. A computer code is programmed using the FORTRAN language to solve the governing equations for continuity, momentum, and energy conservation. The highly coupled temperature and flow fields of the air stream and the fuel stream inside and outside a typical channel of a one-rib flat-tube HPD–SOFC are investigated. This heat transfer and fluid flow results will be used to simulate the overall performance of a flat-tube HPD–SOFC in the near future, and to help optimize the design and operation of a SOFC stack in practical applications.

1.
Singhal
,
S. C.
, 2002, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
0167-2738,
152–153
,
405
410
.
2.
Stambouli
,
A. B.
, and
Traversa
,
E.
, 2002, “
Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy
,”
Renewable and Sustainable Energy Reviews
,
6
,
433
455
.
3.
Ahamed
,
S.
,
McPheeters
,
C.
, and
Kumar
,
R.
, 1991, “
Thermal-Hydraulic Model of a Monolithic Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
138
,
2712
2718
.
4.
Campanari
,
S.
, 2001, “
Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module
,”
J. Power Sources
0378-7753,
92
,
26
34
.
5.
Ferguson
,
J. R.
,
Fiard
,
J. M.
, and
Herbin
,
R.
, 1996, “
Three-Dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
58
,
109
122
.
6.
Nagata
,
S.
,
Momma
,
A.
,
Kato
,
T.
, and
Kasuga
,
Y.
, 2001, “
Numerical Analysis of Output Characteristics of Tubular SOFC with Internal Reformer
,”
J. Power Sources
0378-7753,
101
,
60
71
.
7.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
,
109
114
.
8.
Carrette
,
L.
,
Friedrich
,
K. A.
, and
Stimming
,
U.
, 2001, “
Fuel Cells—Fundamentals and Applications
,”
Fuel Cells
1615-6846,
1
,
5
39
.
9.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
,
305
313
.
10.
Bessette
,
N. F.
,
Borglum
,
B. P.
,
Schichl
,
H.
, and
Schmidt
,
D. S.
, 2001, “
Siemens SOFC Technology on the Way to Economic Competitiveness
,” Power Journal (Magazine of the Siemens Power Generation Group), January, pp.
10
13
.
11.
Vora
,
S. D.
, and
Collins
,
D.
, 2003, “
Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems
,” Fuel Cell Annual Report NETL, DOE, pp.
18
20
.
12.
Li
,
P. W.
,
Schaefer
,
L.
, and
Chyu
,
M. K.
, 2003, “
The Energy Budget in Tubular and Planar Type Solid Oxide Fuel Cells Studied Through Numerical Simulation
,” ASME International Mechanical Engineering Congress and Exposition, Nov. 16–21, Washington, DC, USA, No. IMECE-42426.
13.
Perry
,
R. H.
,
Green
,
D. W.
, and
Maloney
,
J. O.
, 1997,
Perry’s Chemical Engineers’ Handbook
, 7th ed.,
McGraw-Hill
, New York, Chap. 2.
14.
Iwata
,
M.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Sakaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
,
297
308
.
15.
Vora
,
S. D.
, 2003,
SECA Program at Siemens Westinghouse
, Internal report, April.
You do not currently have access to this content.