Abstract

Maintaining both maximum temperature and temperature uniformity within the desirable limit is a crucial issue for high C-rating Li-ion batteries of electric vehicles, which can be achieved by the properly designed battery thermal management system (BTMS). In this research, three new designs of liquid-cooled micro-channeled BTMS are suggested for cylindrical batteries to address the issue of temperature variations and uneven temperature distribution. Using 3D numerical simulation, we investigate the impacts of volume flowrate and the usage of mono/hybrid nanofluids with varying concentrations on the thermal performance of the battery pack at a high C-rate by utilizing a two-phase mixture model. Effects on maximum temperature, temperature uniformity, pumping power, and heat transfer coefficient to pressure drop ratio are investigated. Results demonstrate that the effectiveness of heat transmission and temperature uniformity of the battery pack are positively impacted by an increase in nanoparticle concentration in nanofluid and volume flow rate. Even at high C-rates (5 C), the proposed design can effectively reduce both cell temperature and thermal gradient of the 21700-type cylindrical cell. Design 3 is the most favorable BTMS for Li-ion cylindrical battery in terms of both maximum temperature and temperature uniformity (maximum temperature of 304.72 K and temperature difference of 4.7 K).

References

1.
Ding
,
Y.
,
Cano
,
Z. P.
,
Yu
,
A.
,
Lu
,
J.
, and
Chen
,
Z.
,
2019
, “
Automotive Li-Ion Batteries: Current Status and Future Perspectives
,”
Electrochem. Energy Rev.
,
2
, pp.
1
28
.
2.
Tran
,
M. K.
,
Mevawalla
,
A.
,
Aziz
,
A.
,
Panchal
,
S.
,
Xie
,
Y.
, and
Fowler
,
M.
,
2022
, “
A Review of Lithium-Ion Battery Thermal Runaway Modelling and Diagnosis Approaches
,”
Processes
,
10
(
6
), p.
1192
.
3.
Xie
,
Y.
,
Liu
,
Y.
,
Fowler
,
M.
,
Tran
,
M. K.
,
Panchal
,
S.
,
Li
,
W.
, and
Zhang
,
Y.
,
2022
, “
Enhanced Optimization Algorithm for the Structural Design of an Air-Cooled Battery Pack Considering Battery Lifespan and Consistency
,”
Int. J. Energy Res.
,
46
(
15
), pp.
24021
24044
.
4.
Dubey
,
P.
,
Pulugundla
,
G.
, and
Srouji
,
A. K.
,
2021
, “
Direct Comparison of Immersion and Cold-Plate Based Cooling for Automotive Li-Ion Battery Modules
,”
Energies
,
14
(
5
), p.
1259
.
5.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
6.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
.
7.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder-Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
.
8.
Mohammadian
,
S. K.
,
He
,
Y. L.
, and
Zhang
,
Y.
,
2015
, “
Internal Cooling of a Lithium-Ion Battery Using Electrolyte as Coolant Through Microchannels Embedded Inside the Electrodes
,”
J. Power Sources
,
293
, pp.
458
466
.
9.
Lan
,
C.
,
Xu
,
J.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2016
, “
Thermal Management for High Power Lithium-Ion Battery by Minichannel Aluminum Tubes
,”
Appl. Therm. Eng.
,
101
, pp.
284
292
.
10.
Basu
,
S.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Song
,
T.
,
Sohn
,
D. K.
, and
Yeo
,
T.
,
2016
, “
Coupled Electrochemical Thermal Modelling of a Novel Li-Ion Battery Pack Thermal Management System
,”
Appl. Energy
,
181
, pp.
1
13
.
11.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
.
12.
Panchal
,
S.
,
Khasow
,
R.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Thermal Design and Simulation of Mini-Channel Cold Plate for Water Cooled Large Sized Prismatic Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
122
, pp.
80
90
.
13.
Rao
,
Z.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
.
14.
Tang
,
Z.
,
Min
,
X.
,
Song
,
A.
, and
Cheng
,
J.
,
2019
, “
Thermal Management of a Cylindrical Lithium-Ion Battery Module Using a Multichannel Wavy Tube
,”
J. Energy Eng.
,
145
(
1
), p.
04018072
.
15.
Huang
,
Y.
,
Wang
,
S.
,
Lu
,
Y.
,
Huang
,
R.
, and
Yu
,
X.
,
2020
, “
Study on a Liquid Cooled Battery Thermal Management System Pertaining to the Transient Regime
,”
Appl. Therm. Eng.
,
180
, p.
115793
.
16.
Sheng
,
L.
,
Zhang
,
H.
,
Su
,
L.
,
Zhang
,
Z.
,
Zhang
,
H.
,
Li
,
K.
,
Fang
,
Y.
, and
Ye
,
W.
,
2021
, “
Effect Analysis on Thermal Profile Management of a Cylindrical Lithium-Ion Battery Utilizing a Cellular Liquid Cooling Jacket
,”
Energy
,
220
, p.
119725
.
17.
Li
,
C.
,
Li
,
Y.
,
Srinivaas
,
S.
,
Zhang
,
J.
,
Qu
,
S.
, and
Li
,
W.
,
2021
, “
Mini-Channel Liquid Cooling System for Improving Heat Transfer Capacity and Thermal Uniformity in Battery Packs for Electric Vehicles
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
3
), p.
030905
.
18.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2021
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME J. Thermal Sci. Eng. Appl.
,
13
(
2
), p.
021015
.
19.
Sun
,
Y.
, and
Li
,
K.
,
2022
, “
Study on Heat Transfer Characteristics of Honeycomb Liquid-Cooled Lithium Battery Module
,”
Therm. Sci.
,
26
(
5B
), pp.
4285
4299
.
20.
Mondal
,
B.
,
Lopez
,
C. F.
, and
Mukherjee
,
P. P.
,
2017
, “
Exploring the Efficacy of Nanofluids for Lithium-Ion Battery Thermal Management
,”
Int. J. Heat Mass Transfer
,
112
, pp.
779
794
.
21.
Liu
,
H.
,
Chika
,
E.
, and
Zhao
,
J.
,
2018
, “
Investigation Into the Effectiveness of Nanofluids on the Mini-Channel Thermal Management for High Power Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
142
, pp.
511
523
.
22.
Jilte
,
R. D.
,
Kumar
,
R.
, and
Ahmadi
,
M. H.
,
2019
, “
Cooling Performance of Nanofluid Submerged Vs. Nanofluid Circulated Battery Thermal Management Systems
,”
J. Clean. Prod.
,
240
, p.
118131
.
23.
Srinivaas
,
S.
,
Li
,
W.
,
Garg
,
A.
,
Peng
,
X.
, and
Gao
,
L.
,
2020
, “
Battery Thermal Management System Design: Role of Influence of Nanofluids, Flow Directions, and Channels
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021110
.
24.
Faizan
,
M.
,
Pati
,
S.
, and
Randive
,
P.
,
2022
, “
Implications of Novel Cold Plate Design With Hybrid Cooling on Thermal Management of Fast Discharging Lithium-Ion Battery
,”
J. Energy Storage
,
53
, p.
105051
.
25.
Kumar
,
V.
, and
Sarkar
,
J.
,
2018
, “
Two-Phase Numerical Simulation of Hybrid Nanofluid Heat Transfer in Minichannel Heat Sink and Experimental Validation
,”
Int. Commun. Heat Mass Transfer
,
91
, pp.
239
247
.
26.
Fathabadi
,
H.
,
2014
, “
A Novel Design Including Cooling Media for Lithium-Ion Batteries Pack Used in Hybrid and Electric Vehicles
,”
J. Power Sources
,
245
, pp.
495
500
.
27.
Yin
,
L.
,
Geng
,
Z.
,
Chien
,
Y. C.
,
Thiringer
,
T.
,
Lacey
,
M. J.
,
Andersson
,
A. M.
, and
Brandell
,
D.
,
2022
, “
Implementing Intermittent Current Interruption Into Li-Ion Cell Modelling for Improved Battery Diagnostics
,”
Electrochim. Acta
,
427
, p.
140888
.
28.
Du
,
S.
,
Lai
,
Y.
,
Ai
,
L.
,
Ai
,
L.
,
Cheng
,
Y.
,
Tang
,
Y.
, and
Jia
,
M.
,
2017
, “
An Investigation of Irreversible Heat Generation in Lithium-Ion Batteries Based on a Thermo-Electrochemical Coupling Method
,”
Appl. Therm. Eng.
,
121
, pp.
501
510
.
29.
Sahu
,
M.
, and
Sarkar
,
J.
,
2019
, “
Steady-State Energetic and Exergetic Performances of Single-Phase Natural Circulation Loop With Hybrid Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
8
), p.
082401
.
30.
Chamkha
,
A. J.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2017
, “
Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semicircular Cavity
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041004
.
31.
Lotfi
,
R.
,
Saboohi
,
Y.
, and
Rashidi
,
A. M.
,
2010
, “
Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
74
78
.
32.
Labib
,
M. N.
,
Nine
,
M. J.
,
Afrianto
,
H.
,
Chung
,
H.
, and
Jeong
,
H.
,
2013
, “
Numerical Investigation on Effect of Base Fluids and Hybrid Nanofluid in Forced Convective Heat Transfer
,”
Int. J. Therm. Sci.
,
71
, pp.
163
171
.
33.
Mojarrad
,
M. S.
,
Keshavarz
,
A.
, and
Shokouhi
,
A.
,
2013
, “
Nanofluids Thermal Behavior Analysis Using a New Dispersion Model Along With Single-Phase
,”
Heat Mass Transfer
,
49
, pp.
1333
1343
.
34.
Fazeli
,
S. A.
,
Hashemi
,
S. M. H.
,
Zirakzadeh
,
H.
, and
Ashjaee
,
M.
,
2012
, “
Experimental and Numerical Investigation of Heat Transfer in a Miniature Heat Sink Utilizing Silica Nanofluid
,”
Superlattices Microstruct.
,
51
(
2
), pp.
247
264
.
You do not currently have access to this content.