The present-day high-temperature solid oxide fuel cells (SOFCs), based on yttria-stabilized zirconia (YSZ) electrolyte, a lanthanum-strontium manganite (LSM) cathode and a nickel-YSZ cermet anode, operate at 8001000°C. Cathode materials are restricted to doped lanthanum manganites due to their stability in oxidizing atmosphere, sufficient electrical conductivity, and thermal expansion match to the YSZ electrolyte. Reduction in the operating temperature of SOFCs is desirable to lower the costs and to overcome the technological disadvantages associated with elevated temperatures. However, as the operating temperature is reduced, the decrease in the LSM conductivity and increase in interfacial polarization resistances between the LSM cathode and YSZ electrolyte become critical. Therefore, different approaches have been proposed to improve interfacial quality and electrochemical performance of the LSM/YSZ cathode. The length of the triple-phase boundary (TPB) correlates well with the interfacial resistances to electrochemical oxidation of hydrogen at the anode and reduction in oxygen at the cathode. The extension of the TPB or the number of active reaction sites becomes, therefore, a determining factor in improving electrode performance. This can be achieved by developing electrode materials of higher ambipolar conductivity and by optimizing the microstructure of the electrodes. In order to improve SOFC performance, both composition and structure of the LSM/YSZ interface and of the cathode should be optimized. Recently, functional grade materials (FGMs) were introduced for SOFC technology. However, all studies reported in the literature so far, were focused on cathodes with only compositional gradient. On the other hand, intuitionally the best structure for a functional SOFC should be characterized by both compositional and porosity gradients. Fine grains (and high surface area) close to the electrode/electrolyte surface and large grains (and thus large pore size) at the air/oxygen side are expected to be of advantage. In the present study, “symmetrical” cathode-electrolyte-cathode SOFC single cells were fabricated. The cells consisted of the functional grade LSM cathode with YSZ/LSM cathode functional layer and LSM contact layer. The effects of various geometrical and microstructural parameters of cathode/functional layers on the overall cell performance were systematically investigated. The parameters investigated were the (1) cathode functional layer thickness and grain size and (2) the LSM contact layer thickness. Cathode performances were tested by means of electrochemical impedance spectroscopy (EIS) over a temperature range of 650950°C, using air as oxidant. The dependence of cell performance on various parameters was rationalized by a comprehensive microscale model. A cathode polarization corresponding to 0.140.4Ωcm2 at 750°C was achieved in this manner.

1.
Kenjo
,
T.
, and
Nishiya
,
M.
, 1992, “
LaMnO3 Air Cathodes Containing ZrO2 Electrolyte for High-Temperature Solid Oxide Fuel-Cells
,”
Solid State Ionics
0167-2738,
57
, pp.
295
302
.
2.
Murray
,
E. P.
,
Tsai
,
T.
, and
Barnett
,
S. A.
, 1998, “
Oxygen Transfer Processes in (La,Sr)MnO3/Y2O3-Stabilized ZrO2 Cathodes: An Impedance Spectroscopy Study
,”
Solid State Ionics
0167-2738,
110
, pp.
235
243
.
3.
Perry Murray
,
E.
, and
Barnett
,
S. A.
, 2001, “
(La,Sr)MnO3−(Ce,Gd)O2−x Composite Cathodes for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
143
, pp.
265
273
.
4.
Jiang
,
S. P.
,
Leng
,
Y. J.
,
Chan
,
S. H.
, and
Khor
,
K. A.
, 2003, “
Development of (La,Sr)MnO3-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
6
, pp.
A67
A70
.
5.
Kenjo
,
T.
, and
Nishiya
,
M.
, 1992, “
LaMnO3 Air Cathodes Containing ZrO2 Electrolyte for High Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
57
, pp.
295
302
.
6.
Østergård
,
M. J. L.
,
Clausen
,
C.
,
Bagger
,
C.
, and
Mogensen
,
M.
, 1995, “
Manganite-Zirconia Composite Cathodes for SOFC: Influence of Structure and Composition
,”
Electrochim. Acta
0013-4686,
40
, pp.
1971
1981
.
7.
Sasaki
,
K.
,
Wurth
,
J. -P.
,
Gschwend
,
R.
,
Godickemeier
,
M.
, and
Gauckler
,
L. J.
, 1996, “
Microstructure-Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
530
543
.
8.
van Heuveln
,
F. H.
,
Bouwmeester
,
H. J. M.
, and
Berkel
,
F. P. F.
, 1997, “
Electrode Properties of Sr-Doped LaMnO3 on Yttria-Stabilized Zirconia
,”
J. Electrochem. Soc.
0013-4651,
144
, pp.
126
133
.
9.
Jørgensen
,
M. J.
,
Primdahl
,
S.
,
Bagger
,
C.
, and
Mogensen
,
M.
, 2001, “
Effect of Sintering Temperature on Microstructure and Performance of LSM–YSZ Composite Cathodes
,”
Solid State Ionics
0167-2738,
139
, pp.
1
11
.
10.
Williford
,
R. E.
, and
Singh
,
P.
, 2004, “
Engineered Cathodes for High Performance SOFCs
,”
J. Power Sources
0378-7753,
128
(
1
), pp.
45
53
.
11.
Kim
,
J. W.
,
Virkar
,
A. V.
,
Fung
,
K. -Z.
,
Metha
,
K.
, and
Singhal
,
S. C.
, 1999, “
Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
146
(
1
), pp.
69
78
.
12.
Tanner
,
C. W.
,
Fung
,
K. Z.
, and
Virkar
,
A. V.
, 1997, “
The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance. I. Theoretical Analysis
,”
J. Electrochem. Soc.
0013-4651,
144
(
1
), pp.
21
30
.
13.
Zhao
,
F.
,
Jiang
,
Y.
,
Lin
,
G. Y.
, and
Virkar
,
A. V.
, 2001, “
The Effect of Electrode Microstructure on Cathodic Polarization
,”
Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells
,
H.
Yokokawa
and
S. C.
Singhal
, eds.,
The Electrochemical Society
,
Pennington, NJ
, pp.
501
511
, Paper No. PV2001-16.
14.
Zhao
,
F.
, and
Virkar
,
A. V.
, 2005, “
Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters
,”
J. Power Sources
0378-7753,
141
, pp.
79
95
.
15.
Takeda
,
Y.
,
Kanno
,
R.
,
Noda
,
M.
,
Tomido
,
Y.
, and
Yamamoto
,
O.
, 1987, “
Cathodic Polarization Phenomena of Perovskite Oxide Electrodes With Stabilized Zirconia
,”
J. Electrochem. Soc.
0013-4651,
134
(
11
), pp.
2656
2661
.
16.
Siebert
,
E.
,
Hammouche
,
A.
, and
Kleitz
,
M.
, 1995, “
Impedance Spectroscopy Analysis of La1−xSritxMnO3-Yttria-Stabilized
,”
Electrochim. Acta
0013-4686,
40
(
11
), pp.
1741
1753
.
17.
Kim
,
J. D.
,
Kim
,
G. D.
,
Moon
,
J. W.
,
Park
,
Y.
,
Lee
,
W. H.
,
Kobayashi
,
K.
,
Nagai
,
M.
, and
Kim
,
C. E.
, 2001, “
Characterization of LSM–YSZ Composite Electrode by ac Impedance Spectroscopy
,”
Solid State Ionics
0167-2738,
143
(
3–4
), pp.
379
389
.
18.
Murray
,
E. P.
,
Tsai
,
T.
, and
Barnett
,
S. A.
, 1998, “
Oxygen Transfer Processes in (La,Sr)MnO3/Y2O3-Stabilized ZrO2 Cathodes: An Impedance Spectroscopy Study
,”
Solid State Ionics
0167-2738,
110
(
3–4
), pp.
235
243
.
19.
Endo
,
A.
,
Fukunaga
,
H.
,
Wen
,
C.
, and
Yamada
,
K.
, 2000, “
Cathodic Reaction Mechanism of dense La0.6Sr0.4CoO3 and La0.81Sr0.09MnO3 Electrodes for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
135
(
1–4
), pp.
353
358
.
20.
van Heuveln
,
F. H.
, and
Bouwmeester
,
H. J. M.
, 1997, “
Electrode Properties of Sr-Doped LaMnO3 on Yttria-Stabilized Zirconia. II. Electrode Kinetics
,”
J. Electrochem. Soc.
0013-4651,
144
(
1
), pp.
134
140
.
21.
Østergård
,
M. J. L.
, and
Mogensen
,
M.
, 1993, “
ac Impedance Study of the Oxygen Reduction Mechanism on La1−xSrxMnO3 in Solid Oxide Fuel Cells
,”
Electrochim. Acta
0013-4686,
38
(
14
), pp.
2015
2020
.
22.
Sasaki
,
K.
,
Wurth
,
J. P.
,
Gschwend
,
R.
,
Godickemeier
,
M.
, and
Gauckler
,
L. J.
, 1996, “
Microstructure-Property Relations of Solid Oxide Fuel Cell Cathodes and Current
,”
J. Electrochem. Soc.
0013-4651,
143
(
2
), pp.
530
543
.
23.
Kenjo
,
T.
, and
Kanehira
,
Y.
, 2002, “
Influence of the Local Variation of the Polarization Resistance on SOFC Cathodes
,”
Solid State Ionics
0167-2738,
148
(
1–2
), pp.
1
14
.
24.
van Berkel
,
F. P. F.
,
Heuveln
,
F. H.
, and
Huijsmans
,
J. P. P.
, 1994, “
Characterization of Solid Oxide Fuel Cell Electrodes by Impedance Spectroscopy and I-V Characteristics
,”
Solid State Ionics
0167-2738,
72
, pp.
240
247
.
25.
Fleig
,
J.
, and
Maier
,
J.
, 1997, “
The Influence of Current Constriction on the Impedance of Polarizable Electrodes: Application to Fuel Cell Electrodes
,”
J. Electrochem. Soc.
0013-4651,
144
(
11
), pp.
L302
L305
.
26.
Fleig
,
J.
,
Pham
,
P.
,
Sztulzaft
,
P.
, and
Maier
,
J.
, 1998, “
Inhomogeneous Current Distributions at Grain Boundaries and Electrodes and Their Impact on the Impedance
,”
Solid State Ionics
0167-2738,
113–115
, pp.
739
747
.
27.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C. W.
, and
Kim
,
J. W.
, 2000, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
131
(
1–2
), pp.
189
198
.
28.
Antunes
,
R.
,
Leone
,
P.
,
Miller
.
M.
, and
Golec
,
T.
, “
Electrode Activation Models Validated by EIS Using Symmetrical Cells
,” unpublished.
You do not currently have access to this content.