State-of-charge (SOC) estimation is essential in the energy management of electric vehicles. In the context of SOC estimation, a dual-filter based on the equivalent circuit model represents an important research direction. The trigger for parameter filter in a dual filter has a significant influence on the algorithm, despite which it has been studied scarcely. The present paper, therefore, discusses the types and characteristics of triggers reported in the literature and proposes a novel trigger mechanism for improving the accuracy and robustness of SOC estimation. The proposed mechanism is based on an open-loop model, which determines whether to trigger the parameter filter based on the model voltage error. In the present work, particle filter (PF) is used as the state filter and Kalman filter (KF) as the parameter filter. This dual filter is used as a carrier to compare the proposed trigger with three other triggers and single filter algorithms, including PF and unscented Kalman filter (UKF). According to the results, under different dynamic cycles, initial SOC values, and temperatures, the root-mean-square error of the SOC estimated using the proposed algorithm is at least 34.07% lower than the value estimated using other approaches. In terms of computation time, the value is 4.67%. Therefore, the superiority of the proposed mechanism is demonstrated.

This content is only available via PDF.
You do not currently have access to this content.