A new hydrophobic micropillared structure for the electrode of a proton exchange membrane fuel cell (PEMFC) is proposed in this study. Its performance has a 40% increase over the conventional structured electrode. The new design changes the gas-diffusion layer (also called microporous layer (MPL)) of the cathode of a PEMFC to a gas-abundant-layer (GAL) by mixing a high percentage of polytetrafluoroethylene (PTFE) into the carbon powder. Unlike the generally flat MPL, the surface of the GAL in contact with the catalyst layer has tens of thousands of micropillars on top of it so that its area can be increased significantly. The interfacial region between the GAL and the catalyst layer will become the main reaction sites because the heavily PTFE treated GAL will be filled with oxygen passageways while most of the catalyst layer of the cathode will eventually be filled with the water produced in the operation. The experimental results with different pillar sizes have shown that the area of the interfacial surface between the GAL and the catalyst layer is the key factor in determining the cell performance and should be made as large as possible.

1.
O’Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
, 2006,
Fuel Cells Fundamentals
,
Wiley
,
New York
.
2.
Escribano
,
S.
,
Aldebert
,
P.
, and
Pineri
,
M.
, 1998, “
Volumic Electrodes of Fuel Cells With Polymer Electrolyte Membranes: Electrochemical Performances and Structural Analysis by Thermoporometry
,”
Electrochim. Acta
0013-4686,
43
(
14–15
), pp.
2195
2202
.
3.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2491
.
4.
Cheng
,
X.
,
Yi
,
B.
,
Han
,
M.
,
Zhang
,
J.
,
Qiao
,
Y.
, and
Yu
,
J.
, 1999, “
Investigation of Platinum Utilization and Morphology in Catalyst Layer of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
79
, pp.
75
81
.
5.
Uchida
,
M.
,
Aoyama
,
Y.
,
Eda
,
N.
, and
Ohta
,
A.
, 1995, “
Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
142
(
12
), pp.
4143
4149
.
6.
Uchida
,
M.
,
Fukuoka
,
Y.
,
Sugawara
,
Y.
,
Ohara
,
H.
, and
Ohta
,
A.
, 1995, “
Improved Preparation Process of Very-Low-Platinum-Loading Electrodes for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
(
11
), pp.
3708
3713
.
7.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1992, “
Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes
,”
J. Appl. Electrochem.
0021-891X,
22
, pp.
1
7
.
8.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1992, “
High Performance Catalyzed Membrenes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cell Electrodes
,”
J. Electrochem. Soc.
0013-4651,
139
(
2
), pp.
L28
L30
.
9.
Chun
,
Y. G.
,
Kim
,
C. S.
,
Peck
,
D. H.
, and
Shin
,
D. R.
, 1998, “
Performance of a Polymer Electrolyte Membrane Fuel Cell With Thin Film Catalyst Electrodes
,”
J. Power Sources
0378-7753,
71
, pp.
174
178
.
10.
Fischer
,
A.
,
Jindra
,
J.
, and
Wendt
,
H.
, 1998, “
Porosity and Catalyst Utilization of Thin Layer Cathodes in Air Operated PEM-Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
28
, pp.
277
282
.
11.
Mizuhata
,
H.
,
Nakao
,
S. I.
, and
Yamaguchi
,
T.
, 2004, “
Morphological Control of PEMFC Electrode by Graft Polymerization of Polymer Electrolyte Onto Platinum-Supported Carbon Black
,”
J. Power Sources
0378-7753,
138
, pp.
25
30
.
12.
Paganin
,
V. A.
,
Ticianelli
,
E. A.
, and
Gonzalez
,
E. R.
, 1996, “
Development and Electrochemical Studies of Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
26
, pp.
297
304
.
13.
Jordan
,
L. R.
,
Shukla
,
A. K.
,
Behrsing
,
T.
,
Avery
,
N. R.
,
Muddle
,
B. C.
, and
Forsyth
,
M.
, 2000, “
Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance
,”
J. Power Sources
0378-7753,
86
, pp.
250
254
.
14.
Passalacqua
,
E.
,
Squadrito
,
G.
,
Lufrano
,
F.
,
Patti
,
A.
, and
Giorgi
,
L.
, 2001, “
Effects of the Diffusion Layer Characteristics on the Performance of Polymer Electrolyte Fuel Cell Electrodes
,”
J. Appl. Electrochem.
0021-891X,
31
, pp.
449
454
.
15.
Gamburzev
,
S.
, and
Appleby
,
A. J.
, 2002, “
Recent Progress in Performance Improvement of the Proton Exchange Membrane Fuel Cell (PEMFC)
,”
J. Power Sources
0378-7753,
107
, pp.
5
12
.
16.
Antolini
,
E.
,
Passos
,
R. R.
, and
Ticianelli
,
E. A.
, 2002, “
Effects of the Carbon Powder Characteristics in the Cathode Gas Diffusion Layer on the Performance of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
109
, pp.
477
482
.
17.
Peled
,
E.
,
Blum
,
A.
,
Ahron
,
A.
,
Philosoph
,
M.
, and
Lavi
,
Y.
, 2003, “
Novel Approach to Recycling Water and Reducing Water Loss in DMFCs
,”
Electrochem. Solid-State Lett.
1099-0062,
6
(
12
), pp.
A268
A271
.
18.
Blum
,
A.
,
Duvdevani
,
T.
,
Philosoph
,
M.
,
Rudoy
,
N.
, and
Peled
,
E.
, 2003, “
Water-Neutral Micro Direct-Methanol Fuel Cell (DMFC) for Portable Applications
,”
J. Power Sources
0378-7753,
117
, pp.
22
25
.
19.
Lu
,
G. Q.
,
Liu
,
F. Q.
, and
Wang
,
C. Y.
, 2005, “
Water Transport Through Nafion 112 Membrane in DMFCs
,”
Electrochem. Solid-State Lett.
1099-0062,
8
(
1
), pp.
A1
A4
.
20.
Jewett
,
G.
,
Guo
,
Z.
, and
Faghri
,
A.
, 2007, “
Water and Air Management Systems for a Passive Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
168
, pp.
434
446
.
21.
Guo
,
Z.
, and
Faghri
,
A.
, 2006, “
Miniature DMFCs With Passive Thermal-Fluids Management System
,”
J. Power Sources
0378-7753,
160
, pp.
1142
1155
.
You do not currently have access to this content.