The presence of dissimilar material systems and thermal gradients introduce thermal stresses in multi-layered electronic assemblies and packages during fabrication and operation. The high stress gradients near the free edge of bonding interfaces of such structures may cause cracking and delamination leading to the failure or malfunction of electronic assemblies and packages. A simple but accurate engineering approach for the calculation of interlaminar thermal stresses due to thermal mismatch in multi-layered structures is needed so that designers can determine interlaminar thermal stresses easily without much computational efforts. A few approaches based on the generalized deformation theory have been published but most of them are only suitable for structures with symmetric layers. For electronic packages and assemblies, unsymmetric layers are often used. An improved approach, Classical Laminate Theory-Edge Stress Shape (CLT-ESS), for prediction of interlaminar thermal stresses that can be applied to multi-layered structures with unsymmetric layers is presented. Comparisons are made with finite element analysis results and are found to be favorable. The proposed approach provides an efficient way for the calculation of interlaminar thermal stresses. [S1043-7398(00)00901-4]

1.
Timoshenko
,
S. P.
,
1925
, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
,
23
, pp.
233
255
.
2.
Chen
,
W. T.
, and
Nelson
,
C. W.
,
1979
, “
Thermal Stress in Bonded Joints
,”
IBM J. Res. Dev.
,
23
, pp.
178
188
.
3.
Suhir, E., 1986, “Stresses in Bi-Metal Thermostat,” ASME Winter Annual Meeting, 86-WA/APM-38, ASME New York, NY.
4.
Suhir
,
E.
,
1989
, “
Interfacial Stresses in Bimetal Thermostats
,”
ASME J. Appl. Mech.
,
56
, pp.
595
600
.
5.
Jiang
,
Z. Q.
,
Huang
,
Y.
, and
Chandra
,
A.
,
1997
, “
Thermal Stresses in Layered Electronic Assemblies
,”
ASME J. Electron. Packag.
,
119
, pp.
127
132
.
6.
Pao
,
Y.-H.
, and
Eisele
,
E.
,
1991
, “
Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading
,”
ASME J. Electron. Packag.
,
113
, pp.
164
172
.
7.
Suhir
,
E.
,
1988
, “
An Approximate Analysis of Stresses in Multilayered Elastic Thin Films
,”
ASME J. Appl. Mech.
,
55
, pp.
143
148
.
8.
Herakovich
,
C. T.
,
1989
, “
Edge Effects and Delamination Failures
,”
J. Strain Anal.
,
24
, pp.
245
252
.
9.
Pipes
,
R. B.
, and
Pagano
,
N. J.
,
1970
, “
Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension
,”
J. Compos. Mater.
,
4
, pp.
538
548
.
10.
Pagano
,
N. J.
,
1974
, “
On the Calculation of Interlaminar Normal Stress in Composite Laminate
,”
J. Compos. Mater.
,
8
, pp.
65
81
.
11.
Wang
,
S. S.
, and
Choi
,
I.
,
1982
, “
Boundary-Layer Effects in Composite Laminates: Part 1—Free-Edge Stress Singularities,” and “Part 2—Frees-Edge Stress Solutions and Basic Characteristics
,”
ASME J. Appl. Mech.
,
49
, pp.
541
548
and pp. 549–560.
12.
Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Elastic Body, Holden Day, San Francisco.
13.
Kassapoglou
,
C.
, and
Lagace
,
P. A.
,
1986
, “
An Efficient Method for the Calculation of Interlaminar Stresses in Composite Materials
,”
ASME J. Appl. Mech.
,
53
, pp.
744
750
.
14.
Kassapoglou
,
C.
, and
Lagace
,
P. A.
,
1987
, “
Closed Form Solutions for the Interlaminar Stress Field in Angle-Ply and Cross-Ply Laminates
,”
J. Compos. Mater.
,
21
, pp.
292
318
.
15.
Webber
,
J.-P. H.
, and
Morton
,
S. K.
,
1993
, “
An Analytical Solution for the Thermal Stresses at the Free Edges of Laminated Plates
,”
Compos. Sci. Technol.
,
46
, pp.
175
185
.
1.
Yin
,
W.-L.
,
1994
, “
Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting: Part 1—A Stress-Function-Based Variational Approach,” and “Part 2—Eigenfunction Analysis and the Results for Symmetric Laminates
,”
ASME J. Appl. Mech.
,
61
, pp.
410
415
;
2.
61
, pp.
416
421
.
1.
Yin
,
W.-L.
,
1995
, “
Interfacial Thermal Stresses in Layered Structures: the Stepped Edge Problem
,”
ASME J. Electron. Packag.
,
117
, pp.
153
158
.
2.
Swett
,
D. W.
, and
Shiflett
,
G. R.
,
1997
, “
Edge Stress in a Composite Strip Subjected to Axial Temperature Gradients: Part 1—Development of the Theoretical Solution
,”
J. Compos. Mater.
,
31
, pp.
1334
1361
.
3.
Wang
,
A. S. D.
, and
Crossman
,
F. W.
,
1977
, “
Edge Effects on Thermally Induced Stresses in Composite Laminates
,”
J. Compos. Mater.
,
11
, pp.
300
312
.
4.
Yi
,
S.
, and
Hilton
,
H. H.
,
1997
, “
Free Edge Stresses in Elastic and Viscoelastic Composites Under Uniaxial Extension, Bending, and Twisting Loadings
,”
ASME J. Eng. Mater. Technol.
,
119
, pp.
266
272
.
5.
Dunne
,
R. C.
, and
Sitaraman
,
S. K.
,
1997
, “
Warpage and Interfacial Stress Distribution in a Single-Level Integrated Module (SLIM)
,”
ASME J. Electron. Packag.
,
119
, pp.
197
203
.
6.
Michaelides
,
S.
, and
Sitaraman
,
S. K.
,
1999
, “
Die Cracking and Reliable Die Design for Flip-Chip Assemblies
,”
IEEE Trans. Adv. Packag.
,
22
, No.
4
, pp.
602
613
.
7.
Yao
,
Q.
, and
Qu
,
J.
,
1999
, “
Three-Dimensional Versus Two-Dimensional Finite Element Modeling of Flip Chip Packages
,”
ASME J. Electron. Packag.
,
121
, pp.
196
201
.
8.
Mirman
,
Ilya B.
,
1991
, “
Effects of Peeling Stresses in Bimaterial Assembly
,”
ASME J. Electron. Packag.
,
113
, pp.
431
433
.
You do not currently have access to this content.