A novel semi-empirical model with an improved single blow method for exploring the heat transfer performance of porous aluminum-foam heat sinks in a channel has been successfully developed. The influencing parameters such as the steady-state air preheating temperature ratio, Reynolds number and medium porosity on local and average heat transfer behavior of porous aluminum-foam heat sinks in a channel are explored. The heat transfer enhancement of using a porous heat sink in a channel to a hollow channel is, (Nu¯b)ss(Nu¯b)ε=1, much greater than unity and generally decrease with increasing Re. Furthermore, two new correlations of (Nu¯b)ss and (Nu¯i)ss in terms of ϴ,Re,Da,γ and ε are proposed. As compared with the results evaluated by the transient liquid crystal method, the channel wall temperatures predicted by the present semi-empirical model have a more satisfactory agreement with the experimental data, especially for the cases with smaller porosities. The limitations with relevant error maps of using the transient liquid crystal method in porous aluminum foam channels are finally postulated.

1.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
49
, pp.
3545
3553
.
2.
Antohe
,
B.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weber
,
R. M.
, 1997, “
Experimental Determination of Permeability and Inertial Coefficients of Mechanically Compressed Aluminum Metal Layers
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
404
412
.
3.
Lage
,
J. L.
,
Antohe
,
B.
, and
Nield
,
D. A.
, 1997, “
Two Types of Nonlinear Pressure-Drop Versus Flow-Rate Relation Observed for Saturated Porous Media
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
700
706
.
4.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
5.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
6.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
, 2000, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
0195-928X,
21
, pp.
453
464
.
7.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1988, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
301
309
.
8.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
9.
Golombok
,
M.
,
Jariwala
,
H.
, and
Shirvill
,
L. C.
, 1990, “
Gas-Solid Heat Exchange in a Fibrous Metallic Material Measured by a Heat Regenerator Technique
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
243
252
.
10.
Younis
,
L. B.
, and
Viskanta
,
R.
, 1993, “
Experimental Determination of the Volumetric Heat Transfer Coefficient between Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
1425
1434
.
11.
Chen
,
P. H.
, and
Chang
,
Z. C.
, 1997, “
Measurements of Thermal Performance of Cryocooler Regenerators Using an Improved Single-Blow Method
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2341
2349
.
12.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow across Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
13.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
1359-6454,
46
, pp.
3619
3635
.
14.
Ichimiya
,
K.
, 1999, “
A New Method for Evaluation of Heat Transfer between Solid Material and Fluid in a Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
978
983
.
15.
Angirasa
,
D.
, and
Peterson
,
G. P.
, 1999, “
Forced Convection Heat Transfer Augmentation in a Channel with a Localized Heat Source Using Fibrous Material
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
1
7
.
16.
Cooper
,
T. E.
,
Field
,
R. J.
, and
Meye
,
J. F.
, 1975, “
Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
442
450
.
17.
Camci
,
C.
,
Kim
,
K.
,
Hippensteele
,
S. A.
, and
Poinsatte
,
P. E.
, 1993, “
Evaluation of a Capturing Based Transient Liquid Crystal Method for High-Resolution Mapping of Convective Heat Transfer on Curved Surfaces
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
311
318
.
18.
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1996, “
Heat Transfer Inside and Downstream of Cavities Using Transient Liquid Crystal Method
,”
J. Thermophys. Heat Transfer
0887-8722,
10
, pp.
511
516
.
19.
Valencia
,
A.
,
Fiebig
,
M.
, and
Mitra
,
K.
, 1995, “
Influence of Heat Conduction on Determination of Heat Transfer Coefficient by Liquid Crystal Thermography
,”
Exp. Heat Transfer
0891-6152,
8
, pp.
271
279
.
20.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
, 1995, “
Heat Transfer Coefficients over a Flat Surface with Air and CO2 Injection through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,” ASME Paper No. 95-GT-10.
21.
Hwang
,
J. J.
, and
Cheng
,
C. S.
, 1999, “
Augmented Heat Transfer in a Triangular Duct by Using Multiple Swirling Jets
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
683
690
.
22.
Jeng
,
T. M.
, 2002, “
Fluid Flow and Heat Transfer Behavior in Porous Channels
,” Ph.D. thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan.
23.
Ellison
,
G. N.
, 1986,
Thermal Computations for Electronic Equipment
,
Van Nostrand Reinhold
, New York, p.
36
.
24.
Lee
,
S. L.
, 1989, “
Weighting Function Scheme and Its Application on Multidimensional Conservation Equations
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
2065
2073
.
25.
Lee
,
S. L.
, 1989, “
A Strong Implicit Solver for Two-Dimensional Elliptic Differential Equations
,”
Numer. Heat Transfer, Part B
1040-7790,
16
, pp.
161
178
.
26.
Jeng
,
T. M.
,
Hwang
,
G. J.
, and
Hung
,
Y. H.
, 2001, “
Thermal Performance of Metallic Porous Channels for Electronics Cooling Applications
,” IPACK2001-15771,
Proceedings of InterPACK’01
, InterPACK 2001 Conference, Kauai, HI, July
8
13
.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, pp.
3
8
.
28.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
29.
Hung
,
Y. H.
, and
Perng
,
S. W.
, 1988, “
An Experimental Technique for Measuring Transient Natural-/Forced-Convective Heat Fluxes in a Vertical Channel
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
305
314
.
30.
Lin
,
H. H.
, and
Hung
,
Y. H.
, 1993, “
Transient Forced Convection Heat Transfer in a Vertical Rib-Heated Channel Using a Turbulence Promoter
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
1553
1571
.
31.
Butler
,
R. J.
, and
Baughn
,
J. W.
, 1996, “
The Effect of the Thermal Boundary Condition on Transient Method Heat Transfer Measurements on a Flate Plate with a Laminar Boundary Layer
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
831
837
.
32.
Chyu
,
M. K.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1998, “
Determination of Local Heat Transfer Coefficient Based on Bulk Mean Temperature Using a Transient Liquid Crystals Technique
,”
Exp. Therm. Fluid Sci.
0894-1777,
18
, pp.
142
149
.
33.
Mills
,
A. F.
, 1962, “
Experimental Investigation of Turbulent Heat Transfer in the Entrance Region of a Circular Conduit
,”
J. Mech. Eng. Sci.
0022-2542,
4
, pp.
63
177
.
34.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
, 1995, “
Effects of Boundary Conditions on Non-Darcian Heat Transfer through Porous Media and Experimental Comparisons
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
651
664
.
35.
Wang
,
M. P.
, 2000, “
Forced Convective Heat Transfer in a Rectangular Hollow or Porous Channel
,” Master’s thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan.
36.
Singh
,
B. S.
, and
Dybbs
,
A.
, 1976, “
Error in Temperature Measurements due to Conduction along the Sensor Leads
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
491
495
.
You do not currently have access to this content.