Understanding the thermal performance of power modules under liquid nitrogen cooling is important for the design of cryogenic power electronic systems. When the power device is conducting electrical current, heat is generated due to Joule heating. The heat needs to be efficiently dissipated to the ambient in order to keep the temperature of the device within the allowable range; on the other hand, it would be advantageous to boost the current levels in the power devices to the highest possible level. Projecting the junction temperature of the power module during cryogenic operation is a crucial step in designing the system. In this paper, we present the thermal simulations of two different types of power metal-oxide semiconductor field effect transistor modules used to build a cryogenic inverter under liquid nitrogen pool cooling and discussed their implications on the design of the system.

1.
Kirschman
,
R. K.
, 1990, “
Low-Temperature Electronics
,”
IEEE Circuits Devices Mag.
8755-3996,
6
(
2
), pp.
12
24
.
2.
Dean
,
M.
,
Foty
,
D.
,
Saks
,
N.
,
Raider
,
S.
, and
Oleszel
,
G.
, 1991, “
Low-Temperature Microelectronics: Opportunities and Challenges
,” Proc. Symp. Low-Temperature Electronic Device Operation, Electrochemical Society,
91
(
14
), pp.
25
37
.
3.
Ray
,
B.
,
Gerber
,
S. S.
,
Patterson
,
R. L.
, and
Myers
,
I. T.
, 1995, “
Power Control Electronics for Cryogenic Instrumentation
,”
Adv. Instrum. Control
1054-0032,
50
(
1
), pp.
131
139
.
4.
Kirschman
,
R. K.
, 1985, “
Cold Electronics: An Overview
,”
Cryogenics
0011-2275,
25
(
3
), pp.
115
122
.
5.
Honda
,
H.
,
Zhang
,
Z.
, and
Takata
,
N.
, 2004, “
Flow and Heat Transfer Characteristics of a Natural Circulation Evaporative Cooling System for Electronic Components
,”
ASME J. Electron. Packag.
1043-7398,
126
, p.
317
324
.
6.
Mukherjee
,
S.
, and
Mudawar
,
I.
, 2003, “
Pumpless Loop for Narrow Channel and Microchannel Boiling
,”
ASME J. Electron. Packag.
1043-7398,
125
, p.
431
441
.
7.
ABAQUS, Inc.
, Providence, RI, 2004, “ABAQUS Standard, Version 6.4,”.
8.
Collier
,
J. G.
, 1981,
Convective Boiling and Condensation
,
McGraw-Hill
, New York, pp.
122
123
.
9.
Lang
,
C.
, 1888,
Trans. Inst. Eng. Shipbuild. Scotl.
0371-6481,
32
, pp.
279
295
.
10.
Drew
,
T. B.
, and
Mueller
,
A. C.
, 1937, “
Boiling
,”
Trans. Am. Inst. Chem. Eng.
0096-7408,
33
, pp.
449
471
.
11.
Boyd
,
R. D.
, 1985, “
Subcooled Flow Boiling Critical Heat Flux (CHF) and its Application to Fusion Energy Components. Part I: A Review of Fundamentals of CHF and Related Data Base
,”
Fusion Technol.
0748-1896,
7
, pp.
7
30
.
12.
Boyd
,
R. D.
, 1985, “
Subcooled Flow Boiling Critical Heat Flux (CHF) and its Application to Fusion Energy Components. Part II: A Review of Microconvective, Experimental, and Correlational Aspects
,”
Fusion Technol.
0748-1896,
7
, pp.
31
51
.
13.
Kandlikar
,
S. G.
, 2001, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
0022-1481,
123
(
6
), pp.
1071
1079
.
14.
Kandlikar
,
S. G.
, 2001, “
Critical Heat Flux in Subcooled Flow Boiling—An Assessment of Current Understanding and Future Directions for Research
,”
Multiphase Sci. Technol.
0276-1459,
13
(
3
), pp.
207
232
.
15.
Tuzla
,
K.
,
Cokmez-Tuzla
,
A. F.
,
Crowley
,
A. J.
, and
Chen
,
J. C.
, 1990, “
Cooling of Electronic Chips in Liquid Nitrogen
,” Proceedings of the 9th International Heat Transfer Conference, Heat Transfer, Vol.
2
, pp.
301
306
.
16.
Ulrich
,
R. K.
, and
Rajan
,
S.
, 1996, “
Thermal Performance of an MCM Flip-Chip Assembly in Liquid Nitrogen
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
19
(
4
), pp.
451
457
.
17.
Mosqueira
,
J.
,
Cabeza
,
O.
,
Francois
,
M. X.
,
Torron
,
C.
, and
Vidal
,
F.
, 1993, “
Measurements of Pool Boiling Heat Transfer From Ceramic Y1Ba2Cu3O7-δ Superconductors to Liquid Nitrogen
,”
Supercond. Sci. Technol.
0953-2048,
6
(
8
), pp.
584
588
.
18.
Usui
,
T.
,
Aizawa
,
K.
, and
Sano
,
Y.
, 1992, “
Experimental Survey of Nucleate Boiling on Surface of Cooling Channel of Silicon Crystal
,”
Proc. SPIE
0277-786X,
1739
, pp.
78
85
.
19.
Nguyen
,
D. N. T.
,
Chen
,
R. H.
,
Chow
,
L. C.
, and
Gu
,
C.
, 2000, “
Effects of Heater Orientation and Confinement on Liquid Nitrogen Pool Boiling
,”
J. Thermophys. Heat Transfer
0887-8722,
14
(
1
), pp.
109
111
.
20.
Chui
,
C. J.
,
Sehmbey
,
M. S.
,
Chow
,
L. C.
, and
Hahn
,
O. J.
, 1995, “
Pool Boiling Heat Transfer From Vertical Heater Array in Liquid Nitrogen
,”
J. Thermophys. Heat Transfer
0887-8722,
9
(
2
), pp.
308
313
.
21.
Lu
,
W.
, 1997, “
Forced Convective Boiling in Liquid Nitrogen from Discrete Heat Sources
,” Ph.D. dissertation, University of Kentucky, Lexington, KY.
22.
Rohsenow
,
W. M.
, 1952, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
0097-6822,
74
, pp.
969
976
.
23.
Slack
,
G. A.
, 1973, “
Nonmetallic Crystals With High Thermal Conductivity
,”
J. Phys. Chem. Solids
0022-3697,
34
, pp.
321
335
.
24.
Slack
,
G. A.
,
Tanzill
,
R. A.
, and
Vandersande
,
J. W.
, 1987, “
The Intrinsic Thermal Conductivity of AlN
,”
J. Phys. Chem. Solids
0022-3697,
48
(
7
), pp.
641
647
.
25.
Weast
,
R. C.
, 1974,
CRC Handbook of Chemistry and Physics
, 55th ed.,
CRC Press
, Boca Raton, FL.
26.
ASM
, 1990,
ASM Handbook Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
, 10th ed.
ASM International
.
27.
Watari
,
K.
,
Brito
,
M. E.
,
Toriyama
,
M.
,
Ishizaki
,
K.
,
Cao
,
S.
, and
Mori
,
K.
, 1999, “
Thermal Conductivity of Y2O3-doped Si3N4 Ceramic at 4 to 1000K
,”
J. Mater. Sci. Lett.
0261-8028,
18
(
11
), pp.
865
867
.
You do not currently have access to this content.