A high precision technique for measuring Poisson’s ratios of elastomers was experimentally implemented. Test fixtures consisted of hollow metal cylinders fitted with matching pairs of pressure sensors at the top and bottom. Evaluation of a preliminary low-pressure fixture led to the development and testing of a high pressure version to investigate potential nonlinearities in the response. A series of elastomeric gels was evaluated by casting them into the cylinders and pressurizing the free end. The pressure at the closed end of the gel was attenuated by the resulting deformation in the gel. The resulting pressure profile obeys equations similar to classical shear lag behavior. Poisson’s ratio was easily calculated from the ratio of the two pressures and the aspect ratio of the gel specimen. A series of seven encapsulant gels was characterized. Consistent results for most gels were obtained to the fifth significant digit, confirming the high precision capabilities of this simple technique. Accurate information on Poisson’s ratio may be required for elastomeric materials that are used in constrained configurations where volumetric changes can be important.

1.
Beer
,
F. P.
, and
Johnson
,
E. R.
, 1992,
Mechanics of Materials
, 2nd ed.
McGraw-Hill
,
New York
.
2.
Ferry
,
J. D.
, 1980,
Viscoelastic Properties of Polymers
, 3rd ed.
Wiley
,
New York
.
3.
Tschoegl
,
N. W.
,
Knauss
,
W. G.
, and
Emri
,
I.
, 2002, “
Poisson’s Ratio in Linear Viscoelasticity—A Critical Review
,”
Mech. Time-Depend. Mater.
1385-2000,
6
(
1
), pp.
3
51
.
4.
Lai
,
Y. H.
,
Dillard
,
D. A.
, and
Thornton
,
J. S.
, 1992, “
The Effect of Compressibility on the Stress Distributions in Thin Elastomeric Blocks and Annular Bushings
,”
ASME J. Appl. Mech.
0021-8936,
59
(
4
), pp.
902
908
.
5.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1989,
The Finite Element Method
, 4th ed. London;
McGraw-Hill
,
New York
.
6.
Romanko
,
J.
, and
Knauss
,
W. G.
, 1980, “
On the Time-Dependence of the Poisson Ratio of a Commercial Adhesive Material
,”
J. Adhes.
0021-8464,
10
(
4
), pp.
269
277
.
7.
Li
,
Y.
,
Hu
,
Z.
, and
Li
,
C.
, 1993, “
New Method for Measuring Poisson’s Ratio in Polymer Gels
,”
J. Appl. Polym. Sci.
0021-8995,
50
, pp.
1107
1111
.
8.
Ma
,
Z.
, and
Ravi-Chandar
,
K.
, 2000, “
Confined Compression: A Stable Homogeneous Deformation for Constitutive Characterization
,”
Exp. Mech.
0014-4851,
40
(
1
), pp.
38
45
.
9.
Ravi-Chandar
,
K.
, and
Ma
,
Z.
, 2000, “
Inelastic Deformation in Polymers in Multiaxial Compression
,”
Mech. Time-Depend. Mater.
1385-2000,
4
, pp.
333
357
.
10.
Matsuoka
,
S.
, and
Maxwell
,
B.
, 1958, “
Response of Linear High Polymers to Hydrostatic Pressure
,”
J. Polym. Sci.
0022-3832,
32
, pp.
131
159
.
11.
Park
,
S. J.
,
Liechti
,
K. M.
, and
Roy
,
S.
, 2004, “
Simplified Bulk Experiments and Hygrothermal Nonlinear Viscoelasticity
,”
Mech. Time-Depend. Mater.
1385-2000,
8
(
4
), pp.
303
344
.
12.
Kim
,
B. R.
,
Son
,
J. M.
, and
Ko
,
M. J.
, 2006, “
Assessment of Thermal Expansion Coefficient of Methylsilsesquioxane Thin Film
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
(
21
), pp.
3109
3120
.
13.
Lu
,
H.
,
Zhang
,
X.
, and
Knauss
,
W. G.
, 1997, “
Uniaxial, Shear, and Poisson Relaxation and Their Conversion to Bulk Relaxation
,”
Polym. Compos.
0272-8397,
18
(
2
), pp.
211
222
.
14.
Rightmire
,
G. K.
, 1970, “
An Experimental Method for Determining Poisson’s Ratio of Elastomers
,”
ASME J. Lubr. Technol.
0022-2305,
92
(
3
), pp.
381
388
.
15.
Ikeuchi
,
K.
,
Fujita
,
S.
, and
Ohashi
,
M.
, 1998, “
Analysis of Fluid Film Formation Between Contacting Compliant Solids
,”
Tribol. Int.
0301-679X,
31
(
10
), pp.
613
618
.
16.
Fishman
,
K. L.
, and
Machmer
,
D.
, 1994, “
Testing Techniques for Measurement of Bulk Modulus
,”
J. Test. Eval.
0090-3973,
22
(
2
), pp.
161
167
.
17.
Gent
,
A. N.
, and
Kim
,
W.
, 1991, “
Bulging of Rubber Through Apertures
,”
Rubber Chem. Technol.
0035-9475,
64
(
5
), pp.
813
821
.
18.
Dillard
,
D. A.
, and
Yu
,
J. H.
, 2003,
Method and Apparatus for Determining Bulk Material Properties Of Elastomeric Materials
, V.T.I.P. Patent 6,578,431.
19.
Yu
,
J. H.
,
Dillard
,
D. A.
, and
Lefebvre
,
D. R.
, 2001, “
Pressure and Shear Stress Distributions of an Elastomer Constrained by a Cylinder of Finite Length
,”
Int. J. Solids Struct.
0020-7683,
38
(
38–39
), pp.
6839
6849
.
20.
Boresi
,
A. P.
,
Schmidt
,
R. J.
, and
Sidebottom
,
O. M.
, 1993,
Advanced Mechanics of Materials
, 5th ed.
Wiley
,
New York
.
You do not currently have access to this content.