This study presents a novel technique for an overmolded package of piezoresistive pressure sensors using an ultrathick photoresist sacrificial layer. A 150μm photoresist block is placed just on the silicon membrane of the pressure sensor and removed after the molding transfer process. The removal of the photoresist block exposes and reserves a sensing channel in the overmolded pressure sensor package. Experimental observations reveal that the silicon membrane of the pressure sensor is completely free of any epoxy molding compound contamination after the transfer molding process. The effectiveness of the photoresist block in shielding the silicon membrane of the pressure sensor was confirmed. Experiment and finite element model results reveal that the packaged pressure sensor has similar sensing characteristics to those of an unpackaged pressure sensor at room temperature. However, the packaged pressure sensor exerts a thermomechanical stress on the silicon membrane of the pressure sensor, resulting in an undesired output voltage drift. Employing a proper package design can reduce the output voltage drift. The proposed packaging scheme has a small package volume and surface mount device compatible features, making it suitable for portable commercial devices.

1.
Janczek
,
T.
, 1997, “
Material Investigation for Pressure Sensor Package p-dsof-8-1
,”
Proceedings of the IEEE International Symposium on Polymeric Electronics Packaging
, Norrkoping, pp.
220
222
.
2.
Abbaspour-Santi
,
E.
,
Afrang
,
S.
, and
Teymoori
,
M. M.
, 2002, “
A Novel Method for Packaging of Micromachined Piezoresistive Pressure Sensor
,”
Proceedings of the IEEE International Conference on Software Engineering
, Orlando, FL, pp.
141
144
.
3.
Bitko
,
G.
,
Monk
,
D. J.
,
Maudie
,
T.
,
Stanerson
,
D.
,
Wertz
,
J.
,
Matkin
,
J.
, and
Petrovic
,
S.
, 1996, “
Analytical Techniques for Examining Reliability and Failure Mechanism of Barrier Coating Encapsulated Silicon Pressure Sensor Exposed to Harsh Media
,”
Proc. SPIE
0277-786X,
2882
, pp.
248
258
.
4.
Nyæather
,
J. B.
,
Larsen
,
A.
,
Liverød
,
B.
, and
Ohlckers
,
P.
, 1998, “
Measurement of Package-Induced Stress and Thermal Zero Shift in Transfer Molded Silicon Piezoresistive Pressure Sensors
,”
J. Micromech. Microeng.
0960-1317,
8
, pp.
168
171
.
5.
Dancaster
,
J.
,
Kim
,
W.
, and
Do
,
D.
, 2003, “
Two-Chip Pressure Sensor and Single Conditioning
,”
Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems
, Boston, MA, pp.
1699
1702
.
6.
Krondorfer
,
R.
,
Kim
,
Y. K.
,
Kim
,
J.
,
Gustafson
,
C. G.
, and
Lommasson
,
T. C.
, 2004, “
Finite Element Simulation of Packaging Stress in Transfer Molded MEMS Pressure Sensors
,”
Microelectron. Reliab.
0026-2714,
44
(
12
), pp.
1995
2002
.
7.
Campabadal
,
F.
,
Cmeras
,
L.
, and
Arrieta
,
M. J.
, 2005, “
Packaging of Silicon Pressure Sensors for Home Application
,”
Proceedings of the IEEE Conference on Electron Devices and Solid-State Circuits
, Hong Kong, pp.
589
591
.
8.
Krondorfer
,
R.
, and
Kim
,
Y. K.
, 2007, “
Packaging Effect on MEMS Pressure Sensor Performance
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
, pp.
285
293
.
9.
Cotofana
,
C.
,
Bossche
,
A.
,
Kaldenberg
,
P.
, and
Mollinger
,
J.
, 1998, “
Low-Cost Plastic Sensor Packaging Using the Open-Window Packaging Concept
,”
Sens. Actuator, A.
,
67
, pp.
185
190
.
10.
Eric
,
K. T. H.
,
Zhao
,
B. Z.
,
Lee
,
S. G.
,
Ho
,
S. C.
, and
Srikanth
,
N.
, 2003, “
Development of Transfer Molding Technology for Package With Die Active Side Partially Exposed
,”
Proceedings of the 53rd Electronic Components and Technology Conference
, New Orleans, pp.
365
372
.
11.
Smith
,
C. S.
, 1954, “
Piezoresistance Effect in Germanium and Silicon
,”
Phys. Rev.
0096-8250,
94
, pp.
42
49
.
12.
Roth
,
S.
,
Dellmann
,
L.
,
Racine
,
G. A.
, and
Rooij
,
N. F.
, 1999, “
High Aspect Ratio UV Photography for Electroplated Structure
,”
J. Micromech. Microeng.
0960-1317,
9
, pp.
105
108
.
13.
Brunet
,
M.
,
O’Donnell
,
T.
,
O’Brien
,
J.
,
McCloskey
,
P.
, and
O'Mathuna
,
S. C.
, 2002, “
Thick Photoresist Development for the Fabrication of High Aspect Ratio Magnetic Coils
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
444
449
.
14.
Kukharenka
,
E.
, and
Kraft
,
M.
, 2003, “
Reliability of Electroplating Mold With Thick Positive spr 220-7 Photoresist
,”
J. Mater. Sci.: Mater. Electron.
0957-4522,
14
, pp.
319
322
.
15.
Lee
,
K. Y.
,
LaBianca
,
N.
,
Rishton
,
S. A.
,
Zolgharnain
,
S.
,
Gelorme
,
J. D.
,
Shaw
,
J.
, and
Chang
,
T. H.-P.
, 1995, “
Micromachining Applications of a High Resolution Ultratick Photoresist
,”
J. Vac. Sci. Technol. B
1071-1023,
13
, pp.
3012
3016
.
16.
Lorenz
,
H.
,
Despont
,
M.
,
Vettiger
,
P.
, and
Renaud
,
P.
, 1998, “
Fabrication of Photoplastic High-Aspect Ratio Micro-Parts and Micro-Molds Using SU-8 UV Resist
,”
Microsyst. Technol.
0946-7076,
4
, pp.
143
146
.
17.
Lorenz
,
H.
,
Despont
,
M.
,
Fahrni
,
N.
,
Brugger
,
J.
,
Renaud
,
P.
, and
Vettiger
,
P.
, 1997, “
High-Aspect-Ratio Ultrathick Negative-Tone Near-UV Photoresist and Its Applications for MEMS
,”
J. Micromech. Microeng.
0960-1317,
7
, pp.
121
124
.
18.
Tseng
,
F. G.
, and
Yu
,
C. S.
, 2002, “
High Aspect Ratio Ultra-Thick Micro-Stencil by JSR THB-430N Negative Tone UV Photoresist
,”
Sens. Actuator, A
,
97–98
, pp.
764
770
.
19.
Bogdanov
,
A. L.
, and
Peredkov
,
S. S.
, 2000, “
Use of SU-8 Photoresist for Very High Aspect Ratio X-Ray Lithography
,”
Microelectron. Eng.
0167-9317,
53
, pp.
493
496
.
20.
Braun
,
T.
,
Wunderle
,
B.
,
Becker
,
K. F.
,
Koch
,
M.
,
Bader
,
V.
,
Aschenbrenner
,
R.
, and
Reichl
,
H.
, 2006, “
Improved Reliability of Leadfree Flip Chip Assemblies Using Direct Underfilling by Transfer Molding
,”
Proceedings of the 31st International Conference on Electronics Manufacturing and Technology
, Malaysia, pp.
27
34
.
21.
Lee
,
C. C.
,
Peng
,
C. T.
, and
Chiang
,
K. N.
, 2006, “
Packaging Effect Investigation of CMOS Compatible Pressure Sensor Using Flip Chip and Flex Circuit Board Technologies
,”
Sens. Actuators, A
0924-4247,
126
, pp.
48
55
.
22.
Peng
,
C. T.
,
Lin
,
J. C.
,
Lin
,
C. T.
, and
Chiang
,
K. N.
, 2005, “
Performance and Package Effect of a Novel Piezoresistive Pressure Sensor Fabricated by Front-Side Etching Technology
,”
Sens. Actuators, A
0924-4247,
119
, pp.
28
37
.
23.
Tsai
,
M. Y.
,
Wang
,
C. T.
, and
Hsu
,
C. H.
, 2006, “
The Effect of Epoxy Molding Compound on Thermal/Residual Deformations and Stress on IC Packaging During Manufacturing Process
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
, pp.
625
635
.
24.
Krondorfer
,
R. H.
, and
Kim
,
Y. K.
, 2007, “
Packaging Effect on MEMS Pressure Sensor Performance
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
2
), pp.
285
293
.
25.
Xu
,
J.
,
Zhao
,
Y.
, and
Zehuangde
,
J.
, 2007, “
Analysis of the Packaging Stress in Monolithic Multi-Sensor
,”
Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineering and Molecular Systems
, Thailand, pp.
241
244
.
26.
Chen
,
L. T.
, and
Cheng
,
W. H.
, 2009, “
A Novel Plastic Package of Pressure Sensors Fabricated Using the Lithographic Dam-Ring Approach
,”
Sens. Actuators, A
0924-4247,
149
, pp.
165
171
.
27.
Lin
,
Y.
, and
Shi
,
F. G.
, 2006, “
Package Design and Material Selection Optimization for Overmolded Flip Chip Package
,”
IEEE Trans. Adv. Packag.
1521-3323,
29
, pp.
525
532
.
28.
Zhang
,
X.
,
Park
,
S.
, and
Judy
,
M. W.
, 2007, “
Accurate Assessment of Packaging Stress Effects on MEMS Sensors by Measurement and Sensor-Package Interaction Simulation
,”
J. Microelectromech. Syst.
1057-7157,
16
(
3
), pp.
639
649
.
29.
Kanda
,
Y.
, 1982, “
A Graphical Representation of the Piezoresistance Coefficients in Silicon
,”
IEEE Trans. Electron Devices
0018-9383,
29
, pp.
64
70
.
30.
Nyæather
,
J. B.
,
Larsen
,
A.
,
Liverød
,
B.
, and
Ohlckers
,
P.
, 1998, “
Measurement of Package-Induced Stress and Thermal Zero Shift in Transfer Molded Silicon Piezoresistive Pressure Sensors
,”
J. Micromech. Microeng.
0960-1317,
8
, pp.
168
171
.
You do not currently have access to this content.